求解圆锥曲线离心率的常用方法人教版

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

求解圆锥曲线离心率的常用方法曾安雄离心率是圆锥曲线的一个重要性质,在高考中频繁出现,下面例析几种常用求法。一、根据离心率的范围,估算e利用圆锥曲线的离心率的范围来解题,有时可利用椭圆的离心率e∈(0,1),双曲线的离心率e1,抛物线的离心率e=1来解决。例1.设,则二次曲线的离心率的取值范围为()A.B.C.D.()解:由,知,故所给的二次曲线是双曲线,由双曲线的离心率e1,排除A、B、C,故选D。二、直接求出a、c,求解e已知圆锥曲线的标准方程或a、c易求时,可利用率心率公式来解决。例2.已知双曲线的一条准线与抛物线的准线重合,则该双曲线的离心率为()A.B.C.D.解:抛物线的准线是,即双曲线的右准线,则,解得,故选D。例3.点P(-3,1)在椭圆的左准线上,过点P且方向为a=(2,-5)的光线,经直线反射后通过椭圆的左焦点,则这个椭圆的离心率为()A.B.C.D.解:由题意知,入射光线为,关于的反射光线(对称关系)为则解得则。故选A。三、构造a、c的齐次式,解出e根据题设条件,借助a、b、c之间的关系,沟通a、c的关系(特别是齐二次式),进而得到关于e的一元方程,从而解得离心率e。例4.已知F1、F2是双曲线的两焦点,以线段F1F2为边作正三角形MF1F2,若边MF1的中点在双曲线上,则双曲线的离心率是()A.B.C.D.解:如图,设MF1的中点为P,则P的横坐标为。由焦半径公式,即,得,解得,故选D。练习:1.过双曲线的左焦点且垂直于x轴的直线与双曲线相交于M、N两点,以MN为直径的圆恰好过双曲线的右顶点A,则双曲线的离心率等于_______。(答案:2)2.设椭圆的两个焦点分别为F1、F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是________。(答案:)

1 / 3
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功