智能控制课后答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1、神经元的种类有哪些?它们的函数关系如何?一、神经元模型神经元模型是生物神经元的抽象和模拟。它是模拟生物神经元的结构和功能、并从数学角度抽象出来的一个基本单元。它是神经网络的最基本的组成部分。神经元一般是多输入-单输出的非线性器件。模型可以描述为iijjiijNetwxs()iiufNet()()iiiyguhNet假设()iiguu,即()iiyfNetiu为神经元的内部状态;i为阀值;ix为输入信号,1,...,jn;ijw为表示从ju单元到iu单元的连接权系数;is为外部输入信号。常用的神经元非线性特性有以下四种(1)阀值型10()00iiiNetfNetNet01Neti阀值函数f(2)分段线性型00max0()iiiiiiiliilNetNetfNetkNetNetNetNetfNetNet0fmaxNeti线性函数fNeti1Neti0(3)Sigmoid函数型1()1iiNetTfNete0NetiSigmoid函数f10.5(4)Tan函数型()iiiiNetNetTTiNetNetTTeefNetee0NetiTan函数f12、为什么由简单的神经元连接而成的神经网络具有非常强大的功能?神经系统是一个高度复杂的非线性动力学系统,虽然每一个神经元的结构和功能十分简单,但由大量神经元构成的网络系统的行为却是丰富多彩和十分复杂的。从神经元模型角度来看,有线性处理单元和非线性处理单元。从网络结构方面来看,有:前向网络、反馈网络和自组织网络。3、神经网络按连接方式分有哪几类,按功能分有哪几类、按学习方式分又有哪几类?神经网络按连接方式?神经网络按连接方式分神经网络是由通过神经元的互连而达到的。根据神经元的连接方式的不同,神经网络可分为以下四种形式:(1)前向网络由输入层、隐含层和输出层组成。每一层只接受前一层神经元的输入。各神经元之间不存在反馈。属于层次型网络。.........输入输出前向网络(2)反馈网络只在输出层到输入层存在反馈,即每一个输入节点都有可能接受来自外部的输入和来自输出神经元的反馈。属于层次型网络。输入输出反馈网络(3)相互结合型网络这种神经网络在任意两个神经元之间都可能有连接。在这个状态中,信号要在神经元之间反复往返传递,网络处在一种不断改变状态的动态之中,从某种初态开始,经过若干次的变化,才会达到某种平衡状态。属于网状结构网络。输入输出相互结合型网络(4)混合型网络通过同一层内神经元的相互结合,可以实现同一层内神经元之间的横向抑制或兴奋机制。这样可以限制每层内能同时动作的神经元数,或者把每层内的神经元分为若干组,让每组作为一个整体来动作。它是层次型网络和网状结构网络的一种结合。输入输出混合型网络神经网络按功能分有哪几类?答:神经网络将神经元按功能和顺序的不同分为输出层、中间层(隐层)、输出层。输出层各神经元负责接收来自外界的输入信息,并传给中间各隐层神经元;隐层是神经网络的内部信息处理层,负责信息变换。根据需要可设计为一层或多层;最后一个隐层将信息传递给输出层神经元经进一步处理后向外界输出信息处理结果。神经网络按按学习方式分又有哪几类?答:有导师学习和无导师学习。4、如图4-24所示的多层前向传播神经网络结构。假设对于期望的输入12[,][13]xx,12[,][0.90.3]ddyy。网络权系数的初始值见图。试用BP算法训练此网络。并详细写出第一次迭代学习的计算结果。这里,取神经元激励函数1()1xfxe。学习步长为1。最大迭代次数为iterafemax。误差为e。(四舍五入,精确到小数后1位)x1x2112-203-1-110-21-23o1o2y1y2神经网络结构图w11w12w21w22w20w112w122w10w102w212w222w202解:输入最大容许逼近误差值和最大迭代学习次数iteratemax。置初始迭代学习次数0iterate。(1).置各权值或阈值的初始值:(0),(0)jijw为小的随机数值;回顾:单一人工神经元有线性和非线性(1)单一人工神经元线性单一人工神经元示意图(线性)...1x1x2xn01w2wnw()xy单一人工神经元的示意图最简单的人工神经元输入和输出数学表示:假设输入项Net由输入信号xj(j=1,2,…,n)的线性组合构成,即01njjjNetwx0为阀值;jw是决定第j个输入的突触权系数。神经元的平衡态输出y为01()njjjywx式中()x表示神经元的激励函数前面假设输入项Net是输入信号xi的线性函数。一般情况下,Net是输入信号xi的非线性函数。因此本题的权值111w,112w,110w,121w,122w,120wx1x2112-203-1110-21-23o1o2y1y2图4-15例4-1的神经网络结构图w11w12w21w22w20w112w122w10w102w212w222w202(2).提供训练样本:输入矢量:,1,2,...,kXkP;期望输出:,1,2,...,kdkP;对每个输入样本进行下面iteratemax的迭代;12[,][13]xx(3).计算网络的实际输出及隐层单元的状态:()kjjjikijiofwo因为12[,][13]TTxx1111111112210121(2)132netwxwxwxx1111221122220122(0)1(1)1netwxwxwxx1112110.119211netoee1221110.731111netoee2222111112210121(0)212.1192netwowowoo2222221122220121(2)31-4.3430netwowowoo21110.89281netye22210.01281netye(4).计算训练误差:(1)()()kjkjkjkjkjooto输出层(1)()kjkjkjkmmjmoow隐含层1)输出层2'211111111()()()(1)6.8910e-004ddyyfnetyyyy2'222222222()()()(1)0.0036ddyyfnetyyyy2)隐含层1222222111111122111(1)()(1)(6.8910e-0041(0.0036)1)0.1192(10.1192)4.5032e-004kkkwoowwoo1222222222211222222(1)()(1)(6.8910e-0040(0.0036)(2))0.7311(10.7311)-0.0014kkkwoowwoo(5).修正权值和阈值:(1)()[()(1)](1)()[()(1)]jijijkijijijjjjjwtwtowtwttttt1111114.5032e-00414.5032e-004wx1112124.5032e-00430.0014wx111014.5032e-004w112121(-0.0014)1-0.0014wx112222(-0.0014)30.0042wx11202-0.0014w2211116.8910e-0040.11928.2141e-005wo2212126.8910e-0040.73115.0380e-004wo221016.8910e-004w2221210.00360.11924.2912e-004wo2222220.00360.73110.0026wo222020.0036w(1)()1,2;0,1,2;1,2llljijijiwiteratewiteratewlij(6).当k每经历1~P后,判断指标是否满足精度要求:;E:精度判断神经网络逼近误差满足要求或迭代学习达到最大容许否?maxtyoriterateiterate1iterateiterate;继续迭代计算直至满足终止条件为止。(7).结束。

1 / 5
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功