2012年安徽省初中毕业升学学业考试数学本试卷共8大题,计23小题,满分150分,考试时间120分钟。题号一二三四五六七八总分得分一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.下面的数中,与-3的和为0的是………………………….()A.3B.-3C.31D.312.下面的几何体中,主(正)视图为三角形的是()A.B.C.D.3.计算32)2(x的结果是()A.52xB.68xC.62xD.58x4.下面的多项式中,能因式分解的是()A.nm2B.12mmC.nm2D.122mm5.某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是()A.(a-10%)(a+15%)万元B.a(1-10%)(1+15%)万元C.(a-10%+15%)万元D.a(1-10%+15%)万元得分评卷人6.化简xxxx112的结果是()A.x+1B.x-1C.—xD.x7.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为()A.22aB.32aC.42aD.52a8.给甲乙丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率为()A.61B.31C.21D.329.如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线,与⊙O过A点的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y关于x的函数图像大致是()10.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.54C.10或54D.10或172二、填空题(本大题共4小题,每小题5分,满分20分)11.2011年安徽省棉花产量约378000吨,将378000用科学计数法表示应是______________.12.甲乙丙三组各有7名成员,测得三组成员体重数据的平均数都是58,方差分别为362甲S,252乙S,162丙S,则数据波动最小的一组是___________________.得分评卷人13.如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=_______________°.14.如图,P是矩形ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论:①S1+S2=S3+S4②S2+S4=S1+S3③若S3=2S1,则S4=2S2④若S1=S2,则P点在矩形的对角线上其中正确的结论的序号是_________________(把所有正确结论的序号都填在横线上).三、(本大题共2小题,每小题8分,满分16分)15.计算:)2()1)(3(aaaa解:16.解方程:1222xxx解:四、(本大题共2小题,每小题8分,满分16分)17.在由m×n(m×n>1)个小正方形组成的矩形网格中,研究它的一条对角线所穿过的小正方形个数f,(1)当m、n互质(m、n除1外无其他公因数)时,观察下列图形并完成下表:猜想:当m、n互质时,在m×n的矩形网格中,一条对角线所穿过的小正方形的个数f与m、n的关系式是______________________________(不需要证明);解:(2)当m、n不互质时,请画图验证你猜想的关系式是否依然成立,解:mnmnf12321343235424735718.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点A1.(1)画出一个格点△A1B1C1,并使它与△ABC全等且A与A1是对应点;(2)画出点B关于直线AC的对称点D,并指出AD可以看作由AB绕A点经过怎样的旋转而得到的.解:五、(本大题共2小题,每小题10分,满分20分)19.如图,在△ABC中,∠A=30°,∠B=45°,AC=32,求AB的长,解:20.九(1)班同学为了解2011年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理,月均用水量x(t)频数(户)频率05x60.12510x0.241015x160.321520x100.202025x42530x20.0445°30°CBA第19题图第20题图频数(户)月用水量(t)30252015105161284OA1CBA第18题图请解答以下问题:(1)把上面的频数分布表和频数分布直方图补充完整;(2)若该小区用水量不超过15t的家庭占被调查家庭总数的百分比;解:(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?解:六、(本题满分12分)21.甲、乙两家商场进行促销活动,甲商场采用“慢200减100”的促销方式,即购买商品的总金额满200元但不足400元,少付100元;满400元但不足600元,少付200元;……,乙商场按顾客购买商品的总金额打6折促销。(1)若顾客在甲商场购买了510元的商品,付款时应付多少钱?解:(2)若顾客在甲商场购买商品的总金额为x(400≤x<600)元,优惠后得到商家的优惠率为p(p=购买商品的总金额优惠金额),写出p与x之间的函数关系式,并说明p随x的变化情况;解:(3)品牌、质量、规格等都相同的某种商品,在甲乙两商场的标价都是x(200≤x<400)元,你认为选择哪家商场购买商品花钱较少?请说明理由。解:七、(本题满分12分)22.如图1,在△ABC中,D、E、F分别为三边的中点,G点在边AB上,△BDG与四边形ACDG的周长相等,设BC=a、AC=b、AB=c.(1)求线段BG的长;解:(2)求证:DG平分∠EDF;证:ABCDEFG(3)连接CG,如图2,若△BDG与△DFG相似,求证:BG⊥CG.证:八、(本题满分14分)23.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m。(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界,求h的取值范围。ABCDEFG第23题图AOxy边界球网189622012安徽中考数学答案1、A2、C3、B4、D5、B6、D7、A8、B9、D10、C填空题:11、3.78*10512、丙13、60°14、②和④(2)f=m+n-1(3)120户22、(1)BG=1()2bc(2)(3)略当y=0时,21(6)2.6060x,解得:1623918x,26239x(舍去)故会出界(3)83h