拉伸复合模具

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

圆筒落料拉深复合模设计绪论随着工业产品质量的不断提高,冲压零件日益复杂化,冲压模具正向高效、精密、长寿命、大型化发展,冲压模具制造日益复杂。模具制造正由过去的劳动密集、依靠工人的手工技巧及采用传统机械加工设备的行业转变为技术密集型行业,更多的依靠各种高效、高精度机床,从过去单一的机械加工转变为机械加工、电加工以及其他特种加工相结合的时代。一般来说,冲模是专用的工艺装备,冲模制造属于单件生产。尽管采取了一些措施,如模架标准化、毛坯专用化、零件商品化等,适当集中模具制造中的部分内容,使其带有批量生产的特点,但对于整个模具制造过程,尤其对于工作零件的制造仍属于单件生产。冷冲压是利用安装在压力机上的冲模对材料施加压力,使其产生分离或塑性变形,从而获得所需零件(俗称冲压件或冲件)的一种压力加工方式。因为它通常是在室温下进行加工,所以称为冷冲压。冷冲压不但可以加工金属材料,而且还可以加工非金属材料和复合材料。冲模是将材料加工成所需冲件的一种工艺装备。冲模在冷冲压中至关重要,一般来说,不具备符合要求的冲模,冷冲压就无法进行;先进的冲压工艺也必须依靠相应的冲模来实现。但由于冲模制造一般是单件小批量生产,精度高,技术要求高,是技术密集型产品,制造成本高。因而,冷冲压生产只有在生产批量大的情况下才能获得较高的经济效益。综上所述,冷冲压与其它加工方法相比,具有独到的特点,所以在工业生产中,尤其在大批量生产中应用十分广泛。相当多的工业部门都越来越多地采用冷冲压加工产品零部件,如机械制造、车辆生产、航空航天、电子、电器、轻工、仪表及日用品等行业。在这些工业部门中,冲压件所占的比重都相当大,不少过去用铸造、锻造、切削加工方法制造的零件,现在已被质量轻、刚度好的冲压件所代替。通过冲压加工,大大提高的生产率,降低了成本。可以说,如果在生产中不广泛采用冲压工艺,许多工业部门的产品要提高生产率、提高质量、降低成本,进行产品的更新换代是难以实现的。模具是大批量生产同形产品的工具,是工业生产的主要工艺装备。模具工业是国民经济的基础工业。模具可保证冲压产品的尺寸精度,使产品质量稳定,而且在加工中不破坏产品表面。用模具生产零部件可以采用冶金厂大量生产的轧制钢板或钢带为坏料,且在生产中不需要加热,具有生产效率高、质量好、质量轻、成本低且节约能源和原材料等一系列优点,是其它加工方法所不能比拟的。使用模具已成为当代工业生产的重要手段和工艺发展方向。现代制造工业的发展的技术水平的提高,很大程度上取决于模具工业的发展。目前,工业生产中普遍采用模具成形工艺方法,以提高产品的生产率的质量。对于普通压力机,每台每分钟可生产几件到几十件冲压件,而高速冲床每分钟可生产数百件甚至上千件以上冲压件。冷冲压所获得的零件一般无需进行切削加工,因而是一种节省能源、节省原材料的无(或少)切削加工方法。由于冷冲压所用原材料多是表面质量好的板料或带料,冲件的尺寸公关由冲模来保证,所以产品尺寸稳定、互换性好。冷冲压产品壁薄、质量轻、刚性好,可以加工成形状复杂的零件,小到钟表的秒针、大到汽车纵梁、覆盖件等。显而易见,模具作为一种专用的工艺装备,在生产中的决定性作用和重要地位逐渐为人们所共识。模具的出现可以追溯到几千年前的陶器烧制和青铜器铸造,但其大规模应用却是随着现代工业的崛起而发展起来的。19世纪,随着军火工业、钟表工业、无线电工业的发展,模具开始得到广泛使用。第二次世界大战后,随着世界经济的飞速发展,它又成了大量生产家用电、车、电子仪器、照相机、钟表等零件的最佳方式。从世界范围看,当时美国的冲压技术走在最前列,而瑞士的精冲、德国的冷挤压技术,苏联对塑性加工的研究也处于世界先进行列。20世纪50年代中期以前,模具设计多凭经验,参考已有图纸和感性认识,根据用户的要求,制作能满足产品要求的模具,但对所设计模具零件的机械性能缺乏了解。从1955年到1965年,人们通过对模具主要零件的机械性能和受力状况进行数学分析,对金属塑性加工工艺驻原理进行深入探讨,使得冲压技术得到迅猛发展。在此期间归纳出的模具设计原则,使得压力机械、冲压材料、加工方法、模具结构、模具材料、模具制造方法、自动化装置等领域面貌一新,并向实用化方向推进。进入20世纪70年代,不断涌现出各种高效率、高精度、高寿命的多功能自动模具。其代表是五十多个工位的级进模和十几个工位的多工位传递模。在此期间日本以“模具加工精度进入微米级”而站到世界工业的最先列。从20世纪70年代中期至今,计算机逐渐进入模具生产的设计、制造、管理等各个领域;辅助进行零件图形输入、毛坯展开、条料排样、确定模座尺寸和标准、绘制装配图和零件图、输出NC程序(用于数控加工中心和线切割编程)等工作,使得模具设计、加工精度与复杂性不断提高,模具制造周期不断缩短。当前国际上计算机辅助设计(CAD)和计算机辅助制造(CAM)的发展趋势是:继续发展几何图形系统,以满足复杂零件的模具的要求;在CAD和CAM的基础上建立生产集成系统(CIMS);开展塑性成形模拟技术(包括物理模拟和数学模拟)的研究,以提高工艺分析和模具CAD的理论水平和实用性;开发智能数据库和分布式数据库,发展专家系统和智能CAD等。我国模具工业是19世纪末20世纪初随着军火和钟表业引进的压力机发展起来的。从那时到20世纪50年代初,模具多采用作坊式生产,凭工人经验,用简单的加工手段进行制造。在以后的几十年中,随着国民经济的大规模的发展,模具业进步很快。当时我国大量引进苏联的图纸、设备和先进经验,其水平不低于当时工业发达的国家。此后直到20世纪70年代末,由于错过了世界经济发展的在浪潮,我国的模具业没有跟上世界的步伐。20世纪80年代末,伴随家电、轻工、汽车生产线模具的大量进口和模具国产化的呼声日益高涨,我国先后引进了一批现代化的模具加工机床。在此基础上,参照已有的进口模具,我国成功地复制了一批替代品,如汽车覆盖件模具等。模具的国产化虽然使我国模具制造水平逐渐赶上了国际先进水平,但计算机应用方面仍然存在很大差距。我国模具CAD/CAM技术从20世纪80年代起步,长期处于低水平重复开发阶段,所用软件多为进口的图形软件、数据库软件、NC软件等,自主开发的软件缺乏通用性,商品化价值不高,对许多引进的CAD/CAM系统缺乏二次开发,经济效益不显著。针对上述情况,国家有关部门制定了相关政策和措施。在国家产业政策和与之配套的一系列经济政策的支持和引导下,“九五”期间我国模具工业发展迅速,模具行业产业结构有了较大改善,模具商业化水平提高了近10个百分点,中高档模具占模具总量的比例有了明显提高,模具进出口比例也逐步趋向合理。科学技术不段在飞速发展着,我国的模具工业根据技术的不段更新也朝着新的起点迈进。虽然我国模具工业发展比较的晚,但经过广大模具工作者的辛勤奋斗,模具已在向精密复杂的领域进攻,而且在政府的帮助下,我相信我们会逐渐的缩短与发达国家模具工业的发展距离。向更高的方向前行。第一章工件分析工件:圆筒工件如图:材料为10号钢,料厚1.0mm,制件尺寸精度IT14级,形状简单,尺寸叫小,大批量生产,属普通冲压件。第一节工艺分析1.1.1工件工艺分析该工件为圆筒件拉深,形状简单,工件的厚度也无严格要求,易于成型。根据尺寸对应关系,可设计一副模具完成落料、拉深。1.1.2冲压工艺方案的确定该工件包括落料、拉深两道工序。方案一:先落料,在拉深,采用单工序模具。方案二:落料、拉深复合模具。方案三:拉深——落料级进冲压模具。方案比较:方案一中,模具结构简单,但要做到两副模具才能完成,对于大批量生产的工件,采用单工序模具回降低工作效率。方案二中,只需要一副模具,机构比方案一复杂,但对于结构对称的工件,模具的制造也并不困难,可一次性完成落料、拉深,生产效率高,适于大批量生产。方案三中,采用级进模具,也只需要一副模具,模具结构复杂,而且在送料时较困难,拉深后工件边缘质量不好,综合考虑采用方案二较好。第二节毛坯的计算1.2.1毛坯尺寸的计算rdrdhHdD2256.072.1)(4−−∆++=因板料厚度为1mm,可按板厚中径计算。d=34mmH=16.5mmr=3.5mm查表得:mmh2.1=∆计算得:D=56.20mm1.2.2拉深次数的确定坯料的相对厚度为:t/D=1/56.20X100%=1.779%根据数据查表,可用压边圈也可不用,但为保险操作,仍需采用压边圈。总的拉深系数为:587.020.56/33/===Ddm总查表,08钢首次拉深系数为0.5mm,mm1≥总所以,可采用一次完成拉深。拉深件的高度计算:h=H+h∆=16.5+1.2=17.2mm1.2.3排样的计算[1]冲裁件的面积A=mmD222794.24*14.34/20.56==π[2]条料宽度的计算因模具中已设有压边圈,无需侧压装置,则条料的宽度为:B=D+2a查表:工件间最小料宽:mma8.01=侧面料搭边:a=1m则条料的宽度为:B=56.20+2=58.20mm查表:条料的偏差为0.6mm,即2.5806.0−[3]步距s的计算s=D+mma578.020.561=+=[4]材料的利用率%74%100*/==BsAη第二章模具有关计算第一节冲裁力的计算2.1冲压力的计算[1]落料力的计算:τbKLtF=F-冲裁力L-冲裁周长(L=Dπ)t-材料厚度τb-抗剪强度K-系数(一般取1.3)τB查表取310MPa则L=3.14*56.20=176.468mmF=1.3*176.468*1*310=71116.6N[2]拉深力的计算:F=Kbdt1σπd-拉深后工件的直径(外径的尺寸)-σb材料的抗拉强度(查表取315MPa)t-板料的厚度−K1修正系数(查表得0.93)则F=14*34*1*315*0.93=31275N[3]FY压边力太小,防皱效果不好。压边力太大,会增加传力区危险断面上的拉应力实际应用中,在保证变形区不起皱的前提下尽量用小的压边力。PdrDFAY]2[4/)(212+−=πP-单位面积压料力(查表取2.0)−rA凹模圆角半径(暂取6)则FY=3.14/4[)6234(20.5622++−]*2=1636.6N[4]冲压工艺总力:FFFFYZ++=拉深落料=71116.6+31275+1636.6=104028N[5]卸料力的计算:*KFxx=F落料Kx-卸料力系数(查表取0.04)则Fx=0.04*71116.6=2844.7N[6]顶件力的计算FKFZDD*=KD-顶件力系数(查表取0.06)则FD=0.06*104028=6241.68N[7]推件力的计算:FKFTT拉深*=KT-推件力系数(查表取0.55)FT=0.55*31275=17201N[8]压力机公称压力压力机的公称压力要大于或等于各种冲压工艺力的总和。=F压力机FT+FD+Fx+FZ=130315.38N第二节工作部分尺寸的计算2.2.1模具刃口尺寸的计算尺寸及分类凸、凹模双面间隙尺寸偏差和磨损系数计算公式结果落料20.56φ查表Zmax=0.14Zmin=0.1∆=0.62X=0.5δAXDDA+∆−=)(maxδTZDDAT−−=)(min89.55019.00φ+79.550013.0−φ拉深34φ单边间隙Z/2=1.05mm62.0=∆DAδAD+∆−=)75.0(maxδTZDDAT−−=)(535.3305.00+φ435.31003.0−φ2.2.2拉深圆角半径的计算[1]拉深凹模圆角半径的确定:tdDrA)(8.01−=rA1-凹模圆角半径D-坯料直径t-料厚d-凹模内径1)535.3320.56(8.01XrA−==3.8[2].拉深凸模圆角半径的确定:rrAT11)0.1~7.0(=取系数为:0.8则:rT1=0.8*3.8=3mm第三节模具总体设计2.3.1模具类型的选择分析冲压工艺性,采用复合模具生产效率高,模具结构容易制造,模具类型为落料-拉深复合模。2.3.2定位方式的选择模具中冲压采用条料进给,用两个导料销导料,送进步距采用挡料销。2.3.3卸料、出件方式模具

1 / 14
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功