第十章摩擦和润滑第一节摩擦与润滑机理当两个紧密接触的物体沿着它们的接触面作相对运动时,会产生一个阻碍这种运动的阻力,这种现象叫摩擦,这个阻力就叫做摩擦力。摩擦力与垂直载荷的比值叫做摩擦系数。摩擦定律可描述如下:摩擦力与法向载荷成正比:F∝P摩擦力与表面接触无关,即与接触面积大小无关。摩擦力与表面滑动速度的大小无关。静摩擦力(有运动趋向时)FS大于动摩擦力FK,即Fs>FK。摩擦定律公式:F=f·P或f=F/P式中F——摩擦力f——摩擦系数;P——法向载荷,即接触表面所受的载荷;推动力载荷P运动方向摩擦力F机器中凡是互相接触和相互之间有相对运动的两个构件组成的联接称为“运动副”(也可称为“摩擦副”),如滚动轴承里的滚珠与套环;滑动轴承的轴瓦与轴径等等。任何机器的运转都是靠各种运动副的相对运动来实现,而相对运动时必然伴随着摩擦的发生。摩擦首先是造成不必要的能量损失,其次是使摩擦副相互作用的表面发热、磨损乃至失效。磨损是运动副表面材料不断损失的现象,它引起了运动副的尺寸和形状的变化,从而导致损坏。例如油在轴承内运转,轴承孔表面和轴径逐渐磨损,间隙逐渐扩大、发热,使得机器精度和效率下降,伴随着产生冲击载荷,摩擦损失加大,磨损速度加剧,最后使机器失效。润滑是在相对运动部件相互作用表面上涂有润滑物质,把两个相对运动表面隔开,使运动副表面不直接发生磨擦,而只是润滑物质内部分子与分子之间的摩擦。所以,摩擦是运动副作相对运动时的物理现象,磨损是伴随摩擦而发生的事实,润滑则是减少摩擦、降低磨损的重要措施。第二节摩擦分类摩擦有许多分类法。1.按摩擦副运动状态分静磨擦:一个物体沿着另一个物体表面有相对运动趋势时产生的摩擦,叫做静摩擦。这种摩接力叫做静摩擦力。静摩擦力随作用于物体上的外力变化而变化。当外力克服了最大静摩擦力时,物体才开始宏观运动。动磨擦:一个物体沿着另一个物体表面相对运动时产生的摩擦叫做动摩擦。这时,产生的阻碍物体运动的切向力叫做动摩擦力。2.按摩擦副接触形式分滑动摩擦:接触表面相对滑动时的摩擦叫做滑动摩擦。滚动磨擦:在力矩作用下,物体沿接触表面滚动时的摩擦叫做滚动摩擦。3.按摩擦副表面润滑状态分。干摩擦:指既无润滑又无湿气的摩擦。边界摩擦:指摩擦表面有一层极薄的润滑膜存在时的摩擦。这时,摩擦不取决于润滑剂的粘度,而是取决于接触表面和润滑剂的特性。边界摩擦时,不能避免金属的直接接触,这时仍有微小的摩擦力产生,其摩擦系数通常约0.1左右。混合摩擦:属于过度状态的摩擦,包括半干摩擦和半流体摩擦。半干摩擦是指同时有边界摩擦和干摩擦的情况。半流体摩擦是指同时有液体摩擦和干摩擦的情况。混合摩擦能有效的降低摩擦力,其摩擦系数要比边界摩擦小的多。但因表面间仍有轮廓峰的直接接触,所以不可避免的仍有磨损存在。流体摩擦:即流体润滑条件下的摩擦。这时两表面完全被液体油膜隔开,摩擦表现为由粘性流体引起。摩擦系数极小(油润滑时约为0.001-0.008),而且不会有磨损产生,是理想的摩擦状态。炼油化工设备中的一些摩擦副的工作条件是复杂的,如处于高速、高温、或低温、真空等苛刻环境条件下工作,其摩擦、磨损情况也各有不同的特点。第三节产生摩擦的原因对于接触表面作相对运动时产生摩擦力这一现象有各种各样的解释,综合起来有以下几点:机械上发生相对运动的部位一般都经过加工,具有光滑的表面。但实际上,无论加工程度怎样精密,机件表面都不可能“绝对”平滑,在显微镜下看来,都是有高有低、凸凹不平的,如下图所示。金属表面形状如果摩擦表面承受载荷而又紧密接触的突起和陷下部分就会犬牙交错地嵌合在一起,两个接触表面作相对运动时,表面上的突起部分就会互相碰撞,阻碍表面间的相对运动。另外,由于两个摩擦表面承受载荷并紧密接触,表面是由若干突起部分支撑着的,支撑点处两表面之间的距离极小,处于分子引力的作用范围之内,表面作相对运动时,突起部分也要跟着移动,因此就必须克服支撑点处的分子引力。还有,出于碰撞点和支撑点都要承受极高的压力,这就便这些地方的金属表面发生严重的变形、一个表面上的突起就会嵌入另一表面中去。碰撞和塑性变形都会导致产生局部瞬间高温,而撕裂粘结点要消耗动力。以上各点综合起来就表现为摩擦力。第四节磨损物体工作表面的物质,由于表面相对运动而不断损失的现象,叫做磨损。机械零件正常运动的磨损过程一般分为三个阶段,如下图所示。(1)跑合阶段(又称磨合阶段)新的摩擦副表面具有一定的粗糙度,真实接触面积较小。跑台阶段,表面逐渐磨平,真实接触面积逐渐增大,磨损速度减缓,如上图中o-a线段。人们有意利用跑台阶段的轻微磨损,为正常运行的稳定磨损创造条件。选择合理的跑合规程、采取适当的磨擦副材料及加工工艺,使用含活性添加剂的润滑油(摩合油)等方法,都能缩短跑合期。跑合结束应重新换油。(2)稳定磨损阶段这一阶段磨损缓慢稳定。如上图中a—b线。这一线段的斜率就是磨损速度,横坐标时间就是零件耐磨寿命。(3)剧烈磨损阶段上图中b点以后,磨损速度急剧增长,机械效率下降,功率和润滑油的损耗增加,精度丧失,产生异常噪声及振动,摩擦副温度迅速升高,最终导致零件失效。有时也会发生下述情况:ⅰ转入稳定磨损阶段后,长时间内磨损甚微,并无明显的剧烈磨损阶段,零件寿命较长。ⅱ跑合阶段和稳定磨损阶段无明显磨损,当表层达到疲劳极限后,产生剧烈磨损。ⅲ磨损条件恶劣,跑台阶段后,立即转入剧烈磨损阶段,机器无法正常运转。根据磨损的破坏机理及机械零件表面磨损状态,磨损可大体分为下列几种类型。1.粘着磨损磨擦副相对运动时,由于固相粘结,接触表面的材料从一个表面转移到另一个表面的现象,叫做粘着磨损,严重时摩擦副咬死。润滑状态对粘着磨损值影响较大,边界润滑粘着磨损值大于流体动压润滑,而流体动压润滑又大于流体静压润滑。润滑油、脂中加入油性和极压添加剂能提高润滑油吸附能力以及油膜强度,能成倍提高抗粘着磨损的能力。2.磨料磨损硬的颗粒或硬的突起物,在摩擦过程中引起材料脱落,这种现象叫做磨料磨损。3.表面疲劳磨损两接触表面作滚动或滑动复合摩擦时,在交变接触压应力作用下,使材料表面疲劳而产生物质损失的现象叫做表面疲劳磨损。齿轮副、滚动轴承都能产生表面疲劳磨损。表面疲劳磨损分为扩展性及非扩展性两种。当交变压应力较大时,由于材料塑性稍差或润滑选择不当而发生扩展性表面疲劳磨损。4.腐蚀磨损(或称腐蚀机械磨损)在摩擦过程中,金属同时与周围介质发生化学或电化学反应,产生物质损失,这种现象成为腐蚀磨损。由于介质的性质、介质作用在摩擦面上的状态及摩擦材料性能的不同,磨蚀磨损出现的状态也不同。分类见下表。类别产生的基本条件损坏特征示例氧化磨损金属表面与氧化性介质的反应速度很快,形成的氧化膜从表面磨掉后,又很快形成氧化膜。一般在空气中,其磨损速度较小。金属的摩擦表面沿滑动方向呈匀细磨痕,磨损产物为红褐色的FeO或为黑色丝状Fe2O3曲轴轴径,铝合金零件等摩擦副表面。特殊介质磨损摩擦副与酸、碱、盐等特殊介质作用,其磨蚀机理与氧化磨损相似,但磨蚀速度较大摩擦表面遍布点状或丝状磨蚀痕迹,一般比氧化磨损痕迹深,磨损产物为酸、碱、盐的金属化合物化工设备中的零件微动腐蚀磨损机械零件配合较紧的部位,在载荷和一定频率振动条件下,零件表面产生微小滑动,其磨蚀产物为氧化物摩擦表面有较集中的小凹坑,使紧配合部位松动,磨损产物为红褐色氧化铁细颗粒紧配合轴径、螺母、螺栓及键槽处5.侵蚀侵蚀是指含有颗粒的流体撞击在一物体上,使物体表面受到的损伤。侵蚀问题对一些在高速下工作的零件来说显得比较突出,例如强度大、密度小的用碳纤维强化的塑料涡轮叶片,要求叶片的前线应具有较高的抗侵蚀性。第五节润滑在发生相对运动的各种摩擦副的接触面之间加入润滑油(剂),从而使两磨擦面之间形成润滑膜,将原来直接接触的干摩擦面分隔开来,变干摩擦为润滑油(剂)分子间的摩擦,达到减少摩擦,降低磨损,延长机械设备的使用寿命,这就是润滑。1.润滑要求由于各摩擦副的作用、工作条件及其性质不同对于润滑的要求是各不相同的,归纳有以下几点:(1)根据摩擦副的工作条件和作用性质,选用适当的润滑油。(2)根据摩擦副的工作条件和作用性质,确定正确的润滑方式和方法,将润滑油按一定的量分配到各摩擦面之间。(3)搞好润滑管理。2.润滑剂的作用使用润滑剂的目的是为了润滑机械的摩擦部位,减少摩擦抵抗、防止烧结和磨损、减少动力的消耗,以提高机械效率。除此之外,还有一些实用方面的作用,归纳如下:(1)减少摩擦。在摩擦面之间加入润滑油,能使摩擦系数降低,从而减少了摩擦阻力,节约能源的消耗。在流体润滑条件下,润滑油的粘度和油膜厚度对减少摩擦起到十分重要的作用。随着摩擦副接触面间金属-金属接触点的增多,出现了边界润滑条件,此时添加剂的化学性质和化学活性就显得极为重要(2)降低磨损机械零件的粘着磨损、表面疲劳磨损和腐蚀磨损与润滑条件很有关系。在润滑剂中加入抗氧、抗腐剂有利于抑制腐蚀磨损,而加入油性剂、耐压抗磨剂可以有效地降低粘着磨损和表面疲劳磨损。(3)冷却作用。润滑利可以减轻摩擦,并可以吸热、传热和散热,因而能降低机械运转摩擦所造成的温度上升。(4)防腐作用。摩擦面上有润滑剂覆盖时.就可以防上或避免因空气、水滴、水蒸汽、腐蚀性气体及液体、尘土、氧化物等所引起的腐蚀、锈蚀。润滑油的防腐能力与保留于金属表面的油膜厚度有直接关系,何时也取决于润滑剂的组成。采用某些表面活性剂作为防锈剂能使润滑剂的防锈能力提高。(5)绝缘性。精制矿物油的电阻大,如作为电绝缘材料的电绝缘油的电阻是2×1016Ω/mm2(水是0.5×106Ω/mm2)。(6)力的传递。油可以作为静力的传递介质例如汽车的起重机液压油。也可经作为动力的传递介质,例如自动变速机油。(7)减振作用。润滑油吸附在金属表面上,本身应力小,所以,在磨擦副受到冲击载荷时具有吸收冲击能的本领。(8)清洗作用。通过润滑油的循环可以带走邮路系统中的杂质,再经过滤器虑掉。例如润滑油系统的油冲洗。(9)密封作用润滑剂对某些外露部件形成密封,防止水分或杂技的侵入。3.润滑的类型按照磨擦副表面润滑状态,可把润滑类型分为:流体润滑、边界润滑、混合润滑,如下图所示。摩擦系数与轴承因数G的关系(1)流体润滑。在两摩擦面之间加有液体润滑剂,润滑油把两磨擦面完全隔开,变金属接触干摩擦为液体的内磨擦,这就是流体润滑,如下图所示。流体润滑的优点是液体润滑剂的内摩擦力小,通常为0.001~0.01,只有金属直接接触的几十分之—。流体润滑状态实现流体润滑的条件:(a)磨擦表面间必须有相对运动。(b)顺着表面运动的方向.油层必须成楔形。(c)润滑油与摩擦表面必须有一定的附着力(与油性有关),润滑油随磨擦表面运动时必须有一定的内摩擦力、亦即必须有一定的粘度。以滑动轴承形成流体润滑为例,如下图所示。轴不转动时(a),轴与轴承接触面上的润滑油完全被挤出来。当轴开始按箭头方向转动时(b),由于轴表面与润滑油之间有吸附力,而油层内部存在内摩擦力,轴就会带着轴承内右下方的整个楔形油层向前移动,好像把一个木楔打入入窄缝把缝胀开一样,迫使轴向上抬起并略向左偏。当轴转速进一步提高时,轴的位置也进一步抬高,偏心度也减小(c)。轴转速无限大时,轴与轴承的中心应重合在一起(d)。滑动轴承中润滑油层的形成过程轴与轴承摩擦面间的油层厚度,是由轴上所承受的载荷和油层的内摩擦力的大小来决定的,油层内摩擦力的大小取决于油品的粘度和轴与轴承的相对运动速度。可以用轴承特性因数G来表示其关系:G=η·N/P式中:η――润滑油粘度;N――轴承转速(P。·s);P――轴单位投影面上的载荷(N/m2)。G值与润滑油厚度的直接关系,G值小则形成的油层薄,反之,则形成的油层厚。因此,通过G值就可以判断是否能形成有足够厚度的油层以保证流体润滑。但应注意,由于被润滑部件的类型,几何构型以及加工精度等等各有不同,因此,不存在保证流体润滑的最小G值。一般说来,滑动速度大、载荷轻,应选用粘度较小的油品;滑动速度小、载荷重,应选用粘度大的油品。(2)边界润滑流体润滑是比较理想的,但除了接触面上压力强度比较低的轴承和导