极限是研究变量的变化趋势的一个基本工具,在高等数学中许多基本概念和研究问题的方法都和极限密切相关,如函数y=f(x)在x=x0处导数的定义、定积分的定义、偏导数的定义、二重积分和三重积分的定义、无穷级数收敛的定义等等。这些高数中最重要的概念都是用极限来定义的。极限是贯穿高等数学的一条主线,它将高等数学的各个知识点连在一起。实际上,极限的思想和方法产生于某些实际问题的精确解,并且对数学在实际中的应用也有着重要的作用,因此研究生考试往往把求极限问题作为考核的一个重点。下面我们来介绍几种考研试题中经常出现的求极限的问题。1.利用两个重要极限法2.洛必达法则与等价无穷小替换结合法对于一些函数求极限问题,洛必达法则和等价无穷小结合御用,往往能化简运算,收到奇效。3.夹逼定理法4.泰勒展开法5.利用定积分的定义求极限法积分本质上是和式的极限,所以一些和式的极限问题可以转化为求定积分的问题。6.利用极限的四则运算法求极限这种方法主要应用于求一些简单函数的和、乘、积、商的极限。通常情况下,要使用这些法则,往往需要根据具体情况先对函数做某些恒等变形或化简。7.利用导数的定义求极限这种方法要求熟练的掌握导数的定义。8.利用复合函数求极限