数值分析上机作业修改

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

西南交通大学数值分析2015上机实习报告2015年11月数值分析2015上机实习报告I目录第2题...........................................................................................................................11.程序...................................................................................................................12.结果分析...........................................................................................................2第3题...........................................................................................................................51.程序...................................................................................................................62.结果分析...........................................................................................................7第5题...........................................................................................................................81.程序...................................................................................................................82.结果分析...........................................................................................................9数值分析2015上机实习报告1第2题2.某过程测涉及两变量x和y,拟分别用插值多项式和多项式拟合给出其对应规律的近似多项式,已知xi与yi之间的对应数据如下,xi=1,2,…,10yi=34.658840.371914.6448-14.2721-13.357024.823475.2795103.574397.484778.2392(1)请用次数分别为3,4,5,6的多项式拟合并给出最好近似结果f(x)。(2)请用插值多项式给出最好近似结果下列数据为另外的对照记录,它们可以作为近似函数的评价参考数据。xi=Columns1through71.50001.90002.30002.70003.10003.50003.9000Columns8through144.30004.70005.10005.50005.90006.30006.7000Columns15through177.10007.50007.9000yi=Columns1through742.149841.462035.118224.385211.2732-1.7813-12.3006Columns8through14-18.1566-17.9069-11.02262.028419.854940.362661.0840Columns15through1779.568893.7700102.36771.程序(1)多项式拟合程序n=input('输入所要拟合的阶数n=');holdon;x=1:10;y=[34.658840.371914.6448-14.2721-13.357024.823475.2795103.574397.484778.2392];P=polyfit(x,y,n)xi=1:.2:10;yi=polyval(P,xi);plot(xi,yi,x,y,'r*');legend('拟合曲线','原始数据')(2)拉格朗日插值多项式拟合程序数值分析2015上机实习报告2clc;x=1:10;y=[34.658840.371914.6448-14.2721-13.357024.823475.2795103.574397.484778.2392];plot(x,y,'r*');holdon;symst;n=length(x);f=0.0;fori=1:nl=y(i);forj=1:i-1l=l*(t-x(j))/(x(i)-x(j));end;forj=i+1:nl=l*(t-x(j))/(x(i)-x(j));end;f=f+l;simplify(f);f=collect(f);f=vpa(f,6);endti=1.0:0.4:10;f=subs(f,'t',ti);plot(ti,f)legend('拟合曲线','原始数据')title'拉格朗日插值多项式拟合'2.结果分析(1)请用次数分别为3,4,5,6的多项式拟合并给出最好近似结果f(x)。数值分析2015上机实习报告3图2-13次多项式拟合结果图2-24次多项式拟合结果数值分析2015上机实习报告4图2-35次多项式拟合结果图2-46次多项式拟合结果从绘制的图形来看,当采用6次多项式拟合的时候,拟合的曲线已经与所给出的点非常逼近了。数值分析2015上机实习报告56次多项式拟合曲线为:f(x)=0.0194x6-0.5408x5+5.1137x4-16.8973x3-0.8670x2+66.3750x-18.6991(2)拉格朗日插值多项式给出最好近似结果图1-4拉格朗日插值多项式拟合第3题3.用雅格比法与高斯-赛德尔迭代法解下列方程组Ax=b,研究其收敛性,上机验证理论分析是否正确,比较它们的收敛速度,观察右端项对迭代收敛有无影响。(1)A行分别为A1=[6,2,-1],A2=[1,4,-2],A3=[-3,1,4];b1=[-3,2,4]T,b2=[100,-200,345]T,(2)A行分别为A1=[1,0,8,0.8],A2=[0.8,1,0.8],A3=[0.8,0.8,1];b1=[3,2,1]T,b2=[5,0,-10]T,数值分析2015上机实习报告6(3)A行分别为A1=[1,3],A2=[-7,1];b=[4,6]T,1.程序(1)雅格比法程序functionjacobi()clc;clear;A=[62-1;14-2;-314];B=[-3;2;4];Err_user=0.01;N=500;[m,n]=size(A);X=zeros(n,1);k=1;whilek=N;Xk=X;fori=1:nforj=1:nifi~=jAX(j)=A(i,j)*Xk(j);endendSum_AX=sum(AX);AX=0;X(i)=(B(i)-Sum_AX)/A(i,i);endE=max(abs(Xk-X));ifEErr_userbreak;endk=k+1;enddisp(X);%显示迭代结果disp(k);%显示迭代次数(2)高斯-赛德尔迭代法程序数值分析2015上机实习报告7functionGS()clc;clear;A=[62-1;14-2;-314];B=[-3;2;4];A=[10.80.8;0.810.8;0.80.81];B1=[3;2;1];B2=[5;0;-10];Err_user=0.0001;N=50;[m,n]=size(A);X=zeros(n,1);k=1;whilek=NXk=X;fori=1:nforj=1:nifi~=jAX(j)=A(i,j)*X(j);%ÓëJacobi·¨Ö÷ÒªÇø±ðendendsum_AX=sum(AX);AX=0;X(i)=(B1(i)-sum_AX)/A(i,i);endEr=max(abs(Xk-X));ifErErr_userbreak;endk=k+1;enddisp(X);disp(k);end2.结果分析(1)数值分析2015上机实习报告81)A行分别为A1=[6,2,-1],A2=[1,4,-2],A3=[-3,1,4];b1=[-3,2,4]T雅克比迭代:计算结果x=[-0.63630.59600.3737]T,.迭代次数16次。高斯赛德迭代:计算结果x=[-0.63630.59590.3738]T,.迭代次数10次。2)A行分别为A1=[1,0,8,0.8],A2=[0.8,1,0.8],A3=[0.8,0.8,1];b1=[3,2,1]T雅克比迭代:计算不收敛高斯赛德迭代:计算结果x=[5.76900.7694-4.2307]T,.迭代次数30次。(2)A行分别为A1=[1,3],A2=[-7,1];b1=[4,6]T。雅克比迭代:计算结果不收敛高斯赛德迭代:计算结果不收敛通过对雅克比法和高斯法的上机编程实习,分析对比实验结果可得:在方程组Ax=b中,右端项对迭代收敛是有影响的,即当b增大时,迭代次数增加,收敛速度降低。并且通过对比可知,在相同条件下,高斯-赛德尔迭代法比雅克比迭代法收敛速度快;方法的选择也很重要,比如第二问,用雅克比迭代法是发散的,而用高斯迭代法则是收敛的。通过上机验证,我们也得出结论:理论分析是正确的,即当迭代矩阵的谱半径小于1时,迭代法是收敛的,而当迭代矩阵谱半径大于1的时,迭代法都是发散的。第5题5.用Runge-Kutta4阶算法对初值问题y/=-20*y,y(0)=1按不同步长求解,用于观察稳定区间的作用,推荐两种步长h=0.1,0.2。注:此方程的精确解为:y=e-20x1.程序%%%%%%%%%%%%%%%%%%%%%%Runge-Kutta4阶算法%f=-20y%y(0)=1%%%%%%%%%%%%%%%%%%%%%clc;clear;N=10;%设定节点个数h=0.05;%设定步长x(1)=0;%x0=0y(1)=1;%y(0)=1yy(1)=exp(-20*x(1));%y(0)的精确解数值分析2015上机实习报告9%%%%%%%%%%%%%%%%%%%%%%%开始用runge-kutta法计算fori=2:NK1=-20*(y(i-1));%(xi,yi)点的导数为f=-20*yK2=-20*(y(i-1)+K1*h/2);K3=-20*(y(i-1)+K2*h/2);K4=-20*(y(i-1)+K3*h);delta=h*(K1+2*K2+2*K3+K4)/6;y(i)=y(i-1)+delta;%计算y(i)值x(i)=x(i-1)+h;%计算下个节点的x(i)值yy(i)=exp(-20*x(i));%计算y(i)的精确值end;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%存储计算结果dlmwrite('f:\计算结果.xls',x,'delimiter','\t','precision',8);dlmwrite('f:\计算结果.xls',y,'-append','delimiter','\t','precision',8);dlmwrite('f:\计算结果.xls',yy,'-append','delimiter','\t','precision',8);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%画图功能plot(x,y,'o',x,yy,'*'

1 / 13
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功