数字信号处理实验三

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

附录1:贵州大学实验报告学院:电气工程学院专业:测控技术与仪器班级:测仪131姓名杨凯学号1308040019实验组实验时间2016.5.11指导教师成绩实验项目名称用FFT对信号作频谱分析实验目的1.学习用FFT对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析2.误差及其原因,以便正确应用FFT。实验要求1.了解MATLAB的功能,学会使用响应的函数2.学会编写简单的程序,并进行编译,分析3.对结果进行系统分析,根据图像分析系统是否稳定实验原理用FFT对信号作频谱分析是学习数字信号处理的重要内容。经常需要进行谱分析的信号是模拟信号和时域离散信号。对信号进行谱分析的重要问题是频谱分辨率D和分析误差。频谱分辨率直接和FFT的变换区间N有关,因为FFT能够实现的频率分辨率是N/2,因此要求DN/2。可以根据此式选择FFT的变换区间N。误差主要来自于用FFT作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N较大时离散谱的包络才能逼近于连续谱,因此N要适当选择大一些。周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT,得到的离散谱才能代表周期信号的频谱。如果不知道信号周期,可以尽量选择信号的观察时间长一些。对模拟信号进行谱分析时,首先要按照采样定理将其变成时域离散信号。如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。实验仪器PC机,MATLAB软件实验步骤(1)对以下序列进行谱分析。其它nnnnnnx其它nnnnnnxnRnx,074,330,4)(,074,830,1)()()(3241选择FFT的变换区间N为8和16两种情况进行频谱分析。分别打印其幅频特性曲线。并进行对比、分析和讨论。(2)对以下周期序列进行谱分析。4()cos4xnn5()cos(/4)cos(/8)xnnn选择FFT的变换区间N为8和16两种情况分别对以上序列进行频谱分析。分别打印其幅频特性曲线。并进行对比、分析和讨论。(3)对模拟周期信号进行谱分析6()cos8cos16cos20xtttt选择采样频率HzFs64,变换区间N=16,32,64三种情况进行谱分析。分别打印其幅频特性,并进行分析和讨论。4.思考题(1)对于周期序列,如果周期不知道,如何用FFT进行谱分析?(2)如何选择FFT的变换区间?(包括非周期信号和周期信号)(3)当N=8时,)(2nx和)(3nx的幅频特性会相同吗?为什么?N=16呢?5.实验报告要求(1)完成各个实验任务和要求。附上程序清单和有关曲线。(2)简要回答思考题。形。实验内容%用FFT对信号作频谱分析clearall;closeall%实验内容(1)===================================================x1n=[ones(1,4)];%产生序列向量x1(n)=R4(n)M=8;xa=1:(M/2);xb=(M/2):-1:1;x2n=[xa,xb];%产生长度为8的三角波序列x2(n)x3n=[xb,xa];X1k8=fft(x1n,8);%计算x1n的8点DFTX1k16=fft(x1n,16);%计算x1n的16点DFTX2k8=fft(x2n,8);%计算x1n的8点DFTX2k16=fft(x2n,16);%计算x1n的16点DFTX3k8=fft(x3n,8);%计算x1n的8点DFTX3k16=fft(x3n,16);%计算x1n的16点DFT%以下绘制幅频特性曲线subplot(2,2,1);stem(X1k8);%绘制8点DFT的幅频特性图title('(1a)8点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X1k8))])subplot(2,2,3);stem(X1k16);%绘制16点DFT的幅频特性图title('(1b)16点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X1k16))])figure(2)subplot(2,2,1);stem(X2k8);%绘制8点DFT的幅频特性图title('(2a)8点DFT[x_2(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X2k8))])subplot(2,2,2);stem(X2k16);%绘制16点DFT的幅频特性图title('(2b)16点DFT[x_2(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X2k16))])subplot(2,2,3);stem(X3k8);%绘制8点DFT的幅频特性图title('(3a)8点DFT[x_3(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X3k8))])subplot(2,2,4);stem(X3k16);%绘制16点DFT的幅频特性图title('(3b)16点DFT[x_3(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X3k16))])%实验内容(2)周期序列谱分析==================================N=8;n=0:N-1;%FFT的变换区间N=8x4n=cos(pi*n/4);x5n=cos(pi*n/4)+cos(pi*n/8);X4k8=fft(x4n);%计算x4n的8点DFTX5k8=fft(x5n);%计算x5n的8点DFTN=16;n=0:N-1;%FFT的变换区间N=16x4n=cos(pi*n/4);x5n=cos(pi*n/4)+cos(pi*n/8);X4k16=fft(x4n);%计算x4n的16点DFTX5k16=fft(x5n);%计算x5n的16点DFTfigure(3)subplot(2,2,1);mstem(X4k8);%绘制8点DFT的幅频特性图title('(4a)8点DFT[x_4(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X4k8))])subplot(2,2,3);mstem(X4k16);%绘制16点DFT的幅频特性图title('(4b)16点DFT[x_4(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X4k16))])subplot(2,2,2);mstem(X5k8);%绘制8点DFT的幅频特性图title('(5a)8点DFT[x_5(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X5k8))])subplot(2,2,4);mstem(X5k16);%绘制16点DFT的幅频特性图title('(5b)16点DFT[x_5(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X5k16))])%实验内容(3)模拟周期信号谱分析===============================figure(4)Fs=64;T=1/Fs;N=16;n=0:N-1;%FFT的变换区间N=16x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T);%对x6(t)16点采样X6k16=fft(x6nT);%计算x6nT的16点DFTX6k16=fftshift(X6k16);%将零频率移到频谱中心Tp=N*T;F=1/Tp;%频率分辨率Fk=-N/2:N/2-1;fk=k*F;%产生16点DFT对应的采样点频率(以零频率为中心)subplot(3,1,1);stem(fk,abs(X6k16),'.');boxon%绘制8点DFT的幅频特性图title('(6a)16点|DFT[x_6(nT)]|');xlabel('f(Hz)');ylabel('幅度');axis([-N*F/2-1,N*F/2-1,0,1.2*max(abs(X6k16))])N=32;n=0:N-1;%FFT的变换区间N=16x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T);%对x6(t)32点采样X6k32=fft(x6nT);%计算x6nT的32点DFTX6k32=fftshift(X6k32);%将零频率移到频谱中心Tp=N*T;F=1/Tp;%频率分辨率Fk=-N/2:N/2-1;fk=k*F;%产生16点DFT对应的采样点频率(以零频率为中心)subplot(3,1,2);stem(fk,abs(X6k32),'.');boxon%绘制8点DFT的幅频特性图title('(6b)32点|DFT[x_6(nT)]|');xlabel('f(Hz)');ylabel('幅度');axis([-N*F/2-1,N*F/2-1,0,1.2*max(abs(X6k32))])N=64;n=0:N-1;%FFT的变换区间N=16x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T);%对x6(t)64点采样X6k64=fft(x6nT);%计算x6nT的64点DFTX6k64=fftshift(X6k64);%将零频率移到频谱中心Tp=N*T;F=1/Tp;%频率分辨率Fk=-N/2:N/2-1;fk=k*F;%产生16点DFT对应的采样点频率(以零频率为中心)subplot(3,1,3);stem(fk,abs(X6k64),'.');boxon%绘制8点DFT的幅频特性图title('(6a)64点|DFT[x_6(nT)]|');xlabel('f(Hz)');ylabel('幅度');axis([-N*F/2-1,N*F/2-1,0,1.2*max(abs(X6k64))])实验数据实验内容1:实验内容2:实验内容3实验总结程序运行结果分析讨论:用DFT(或FFT)分析频谱,绘制频谱图时,最好将X(k)的自变量k换算成对应的频率,作为横坐标便于观察频谱。2,0,1,2,,1kkkNN为了便于读取频率值,最好关于π归一化,即以/作为横坐标。1、实验内容(1)图(1a)和(1b)说明14()()xnRn的8点DFT和16点DFT分别是1()xn的频谱函数的8点和16点采样;因为3288()((3))()xnxnRn,所以,3()xn与2()xn的8点DFT的模相等,如图(2a)和(3a)。但是,当N=16时,3()xn与2()xn不满足循环移位关系,所以图(2b)和(3b)的模不同。2、实验内容(2),对周期序列谱分析4()cos4xnn的周期为8,所以N=8和N=16均是其周期的整数倍,得到正确的单一频率正弦波的频谱,仅在0.25π处有1根单一谱线。如图(4b)和(4b)所示。5()cos(/4)cos(/8)xnnn的周期为16,所以N=8不是其周期的整数倍,得到的频谱不正确,如图(5a)所示。N=16是其一个周期,得到正确的频谱,仅在0.25π和0.125π处有2根单一谱线,如图(5b)所示。3、实验内容(3),对模拟周期信号谱分析6()cos8cos16cos20xtttt6()xt有3个频率成分,1234,8,10fHzfHzfHz。所以6()xt的周期为0.5s。采样频率123641686.4sFHzfff。变换区间N

1 / 8
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功