新人教版八年级数学下册第二十章导学案第二十章数据的分析课题20.1数据的代表课时:六课时第一课时20.1.1平均数【学习目标】1.认识和理解数据的权及其作用。2.通过实例了解加权平均数的意义,会根据加权平均数的计算公式进行有关计算。【重点难点】重点:加权平均数的概念以及运用加权平均数解决实际问题。难点:对数据的权及其作用的理解。【导学指导】学习教材相关内容,思考、讨论、合作交流后完成下列问题:1.你认为问题(1)应怎样录取?为什么?2.问题(2)应怎样录取?请谈谈你的看法。3.什么是加权平均数?4.“问题(2)”中,所求的结果已不再是各人听说读写成绩的简单平均,而是听说读写成绩的加权平均数,它们的权分别是多少?5.问题(1)中,两名选手的单项成绩都是两个95分与一个85分,为什么他们的最后得分不同呢?谈谈你对权的作用的体会。【课堂练习】1.教材练习第1题。2.某广告公司欲招聘广告策划人员一名,对甲、乙、丙三名候选人进行了三项素质测试,他们的各项测试成绩如下表所示:测试项目测试成绩甲乙丙创新746670综合知识857250语言456690(1)如果根据三项测试平均成绩确定录用人选,那么谁将被录取?(2)根据实际需要,公司将创新、综合知识、语言三项测试得分按4:2:2的比例确定各人的测试成绩,此时谁将被录用?【要点归纳】你今天有什么收获?与同伴交流一下。【拓展训练】学校对各个班级的教室卫生情况考察包括以下几项:黑板、门窗、桌椅、地面。三个班的各项卫生成绩情况分别如下:黑板门窗桌椅地面1班8.599.592班9.58.5993班99.598.5请你设计一个评分方案,并根据你的评分方案计算一下哪个班的卫生情况最好?第二课时20.1.1平均数【学习目标】1.理解把算术平均数的简便算法看成加权平均数的道理,进一步加深对加权平均数的认识。2.能根据频数分布表利用组中值的方法计算加权平均数。3.掌握利用计算器计算加权平均数的方法。【重点难点】重点:能根据频数分布表利用组中值的方法应用公式计算加权平均数。难点:对算术平均数的简便算法与加权平均数算法一致性的理解。【导学指导】学习教材相关内容,思考、讨论、合作交流后完成下列问题:1.你能为教材的算术平均数举一个例子吗?2.把算术平均数的公式与上节课的加权平均数公式进行对比,思考它们的相同之处与不同之处。3.教材的例题1中,怎样算他们的综合成绩?4.你的计算器能求平均数吗?试试看。【课堂练习】1.教材练习第2题。2.八年级一班有学生50人,八年级二班有学生45人。期末数学测试中,一班学生的平均分为81.5分,二班学生的平均分是83.4分,这两个班的平均分是多少?【要点归纳】本节课你学到了什么?与同伴交流一下。【拓展训练】1.小民骑自行车的速度是15千米/时,步行的速度是5千米/时,如果小民先骑自行车2小时,然后步行1小时,那么他的平均速度是多少?2.小民和小亮家去年的饮食、教育、和其他支出均分别为3600元,1200元,7200元。小民家今年的这三项支出依次比去年增长了10﹪,20﹪,30﹪,小亮家今年这三项支出依次比去年增长了20﹪,30﹪,10﹪。小民和小亮家今年的总支出比去年增长的百分数相等吗?它们分别是多少?第三课时20.1.1平均数【学习目标】1.能根据频数分布直方图计算平均数。2.能正确有效应用平均数知识解决问题,提高分析、解决问题的能力。3.学习并体会用样本平均数估计总体平均数的思想方法。【重点难点】重点:能根据频数分布直方图计算平均数。难点:能根据不同特点的频数分布直方图采取相应的处理方法。【导学指导】我们知道,当所要考察的对象很多,或考察本身带有破坏性时,统计中常用通过样本估计总体的方法来获得对总体的认识。例如,实际生活中经常用样本的平均数来估计总体的平均数。学习教材相关内容,思考、讨论、合作交流后完成下列问题:1.教材“探究”中,表格里没有组中值,怎么办?例3某灯泡厂要测量一批灯泡的使用寿命,使用全面调查的方法考察这批灯泡的平均使用寿命合适吗?由这100个灯泡的使用寿命估计这批灯泡的平均使用寿命可以吗?这批灯泡的平均使用寿命是多少?【课堂练习】1.教材115、116页练习题。2.小妹统计了她家10月份的长途电话费清单,并按通话时间画出直方图。(1)这张直方图与第1题中的直方图有何不同?(2)从这张图你能得到哪些信息?(3)小妹家10月份平均每个长途电话的通话时间是多少?(4)你认为能通过(3)的结论估计小妹家一年中平均每个长途电话的通话时间吗?01515102025时间/分频数(通话次数)51015202530【要点归纳】今天你有什么收获,与同伴交流一下。【拓展训练】1.某瓜农采用大棚栽培技术种植了一亩地的良种西瓜,这亩地产西瓜约600个,在西瓜上市前该瓜农随机摘下10个成熟的西瓜,称重如下:西瓜质量/千克5.55.45.04.94.64.3西瓜数量/个123211计算这10个西瓜的平均质量,并根据计算结果估计这亩地的西瓜产量约是多少?2.某班同学进行数学测验,将所得的成绩(得分取整数)进行整理后分成5组,并绘成频数分布直方图,请结合直方图提供的信息,回答下列问题:(1)该班共有多少名学生?(2)80.5-90.5这一分数段的频数、频率分别是多少?(3)这次考试的平均成绩是多少?分数人数50.518151296360.570.580.590.5100.5410第四课时20.1.2中位数和众数【学习目标】1.掌握中位数的概念,会求一组数据的中位数。2.能应用中位数知识分析解决实际问题。3.初步感受中位数的特点及其与平均数的区别与联系。【重点难点】重点:掌握中位数的概念,能应用中位数知识分析解决实际问题。难点:感受中位数的特点及其与平均数的区别与联系。【导学指导】学习教材相关内容,思考、讨论、合作交流后完成下列问题:1.什么是中位数?2.你认为中位数和平均数有什么区别与联系?【课堂练习】1.116页问题2及117页例42.教材练习题。3.在一次测试中,全班平均成绩是78分,小妹考了83分,她说自己的成绩在班里是中上水平,你认为小妹的说法合适吗?下面是小妹她们班所有学生的成绩:20,35,35,40,40,52,63,65,74,79,80,83,84,84,85,85,85,85,85,85,86,87,87,87,87,87,87,87,87,87,87,87,87,87,88,88,90,91,92,93,95.由数列可知,小妹的成绩在全班是中上水平吗?多少分才是中上水平?【要点归纳】今天你有什么收获?与同伴交流一下。【拓展训练】约翰先生有一个小工厂生产超级小玩意。管理人员由约翰先生,他的弟弟,六个亲戚组成;工作人员由五个领工和十个工人组成。工厂经营得很顺利,需要增加一个工人。汤姆需要一份工作,应征而来与约翰先生交流,约翰说:“我们这里报酬不错,平均薪金是每周300美元,你在学徒期每周75美元,不过很快就可以加工资。”汤姆工作几天后找到约翰说:“你欺骗了我,我已经找其他工人问过了,没有一个人的工资超过每周100美元,平均工资怎么可能是一周300美元呢?”约翰说:“啊,汤姆,不要激动,平均工资是300美元,你看,这是一张工资表。”人员约翰约翰的弟弟约翰的亲戚领工工人合计工资x/美元24001000250200100人数f11651023fx240010001500100010006900请你仔细观察表中的数据,回答下面的问题:(1)约翰说每周平均工资300美元是否欺骗了汤姆?平均工资300美元能否客观地反映工人的平均收入?若不能,你认为应该用什么工资反映比较合适?(2)汤姆找工作时,你认为他应该首先了解什么工资?第五课时20.1.2中位数和众数【学习目标】1.掌握众数的概念,会求一组数据的众数。2.能应用众数知识分析解决实际问题。3.初步感受众数的特点及其与中位数、平均数的区别与联系。【重点难点】重点:理解众数的意义,能应用众数知识分析解决实际问题。难点:众数的特点及其与中位数、平均数的区别与联系。【导学指导】学习教材相关内容,思考、讨论、合作交流后完成下列问题:1.什么是众数?2.众数与中位数、平均数有什么相同和不同的?3.118页例5【课堂练习】1.教材练习第1,2题。2.在某电视台举办的歌咏比赛中,六位评委给1号选手的评分如下:90,96,91,96,95,94,这组数据的众数是A.94.5B.95C.96D.23.8年级一班46个同学中,13岁的有5人,14岁的有20人,15岁的15人,16岁的6人。8年级一班学生年龄的平均数,中位数,众数分别是多少?4.求下列数据的众数:(1)3,2,5,3,1,2,3(2)5,2,1,5,3,5,2,2【要点归纳】今天你有什么收获?与同伴交流一下。【拓展训练】1.甲、乙两班举行默写英语单词比赛,成绩如下:参赛人数平均字数中位数甲班55135149乙班55135151如果默写150个以上为优秀,你认为哪个班较好?为什么?2.某中学举行演讲比赛,8(1)、8(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如下表所示:8(1)班758085851008(2)班100801007570(1)根据上图填写下表:平均数(分)中位数(分)众数(分)8(1)班85858(2)班8580(2)结合两班复赛成绩的平均数和中位数,分析哪一个班级的复赛成绩较好。(3)如果在每班参加复赛的选手中分别选出两人参加决赛,你认为哪个班的实力更强一些,并说明理由。第六课时20.1.2中位数和众数【学习目标】1.在解决实际问题中进一步理解平均数、中位数、众数作为数据代表的意义,能根据所给信息求出相应的数据代表。2.结合具体情景体会平均数、中位数、众数三者的特点与差异,能根据具体问题选择适当的量来代表,并作出自己的评判。【重点难点】重点:理解平均数、中位数、众数作为数据代表的意义,能根据具体问题选择适当的量来代表。难点:能对具体问题进行分析,选择适当的量来代表。【导学指导】复习旧知:什么是平均数?什么是中位数?什么是众数?它们有什么区别与联系?学习新知:1.学习教材相关内容,思考、讨论、合作交流后完成下列问题:如何在实际问题中选取平均数、中位数、众数来代表数据?2.119页例6【课堂练习】1.教材练习题。2.8年级某教室里,三位同学正在为谁的数学成绩好而争论,他们五次数学成绩分别是:小花:62,94,95,98,98小妹:62,92,98,99,100小路:40,62,85,99,99他们都认为自己的数学成绩比另两位同学好,(1)他们认为自己的数学成绩比另外两位同学好的依据是什么?(2)你认为哪一个同学的成绩最好呢?请说明理由。【要点归纳】你今天有什么收获?与同伴交流一下。【拓展训练】1.某超市购进一批不同价格的皮鞋,下表是该超市在近几年统计的平均数据。要使该超市销售皮鞋收入最大,该超市应多购()的皮鞋。皮鞋价(元)160140120100销售百分率60%75%83%95%A.160元B.140元C.120元D.100元2.某商场统计了每个营业员在某月的销售额,统计图如下:(1)设营业员的月销售额为x万元,商场规定:当x15时为不称职,当15≤x20时为基本称职,当20≤x25时为称职,当x≥25时为优秀,试求出不称职、基本称职、称职、优秀四个层次营业员人数所占的百分比。(2)根据(1)中的规定,所有称职和优秀的营业员月销售的中位数、众数、平均数分别是多少?(3)为了调动营业员的工作积极性,决定实行销售奖励标准,凡达到或超过这个标准的营业员将受到奖励。如果要使得称职和优秀的所有营业员的半数左右能获奖,你认为这个奖励标准应定为多少合适?简述理由。课题20.2数据的波动课时:四课时第一课时20.2.1极差【学习目标】理解极差可以用来表示一组数据的波动情况并会利用极差解决实际问题。【重点难点】重点难点:极差的概念及其应用。【导学指导】学习教材相关内容,思考、讨论、合作交流后完成下列问题:什么是极差?极差有什么用