新华教育高中部数学同步人教A版必修五第二章数列-单元测试

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

数学5(必修)第二章:数列一、选择题1.数列na的通项公式11nnan,则该数列的前()项之和等于9。A.98B.99C.96D.97答案:B解析:11,2132...11nnannSnnnn119,110,99nSnnn2.在等差数列na中,若4,184SS,则20191817aaaa的值为()A.9B.12C.16D.17答案:A解析:4841,3,SSS而48412816122016,,,,,SSSSSSSSS成等差数列即1,3,5,7,9,1718192020169aaaaSS3.在等比数列na中,若62a,且0122345aaa则na为()A.6B.2)1(6nC.226nD.6或2)1(6n或226n答案:D解析:225432534232220,22,(1)2(1)aaaaaaaaaqaq232210,2,11aaqq或或,当1q时,6na;当1q时,1216,6(1)6(1)nnnaa;当2q时,1213,3262nnnaa4.在等差数列na中,2700...,200...10052515021aaaaaa,则1a为()A.22.5B.21.5C.20.5D.20答案:C解析:501505027002005050,1,()2002ddSaa,1501118,2498,241,20.5aaadaa5.已知等差数列nan的前}{项和为mSaaamSmmmmn则且若,38,0,1,12211等于()A.38B.20C.10D.9答案:C解析:20,(2)0,2,mmmmmmaaaaaa21121221()(21)38,21192mmmmSaamam6.等差数列{}na,{}nb的前n项和分别为nS,nT,若231nnSnTn,则nnab=()A.23B.2131nnC.2131nnD.2134nn答案:B解析:121212112121()22(21)2122123(21)131()2nnnnnnnnnaaaaSnnnbbTnnbb二、填空题1.已知数列na中,11a,11nnnnaaaa,则数列通项na___________。答案:1n解析:1111111111,1,1,nnnnnaaaaaa是以11a为首项,以1为公差的等差数列,111(1)(1),nnnnaan2.已知数列的12nnSn,则12111098aaaaa=_____________。答案:100解析:228910111212712121(771)100aaaaaSS3.三个不同的实数cba,,成等差数列,且bca,,成等比数列,则::abc_________。答案:)2(:1:4解析:22222,2,(2),540acbcbaabcbaaabb,4,2ababcb4.在等差数列na中,公差21d,前100项的和45100S,则99531...aaaa=_____________。答案:10解析:100110011001991100100()45,0.9,0.4,2Saaaaaaaad1995050()0.41022Saa5.若等差数列na中,37101148,4,aaaaa则13__________.S答案156解析:371011431110471311371312,,12,()132aaaaaaaaaaSaaa6.一个等比数列各项均为正数,且它的任何一项都等于它的后面两项的和,则公比q为_______________。答案:512解析:设221215,10,0,2nnnnnaaaqaqaqqqq三、解答题1.已知数列na的前n项和nnS23,求na解析:111132,32,2(2)nnnnnnnnSSaSSn而115aS,∴)2(,2)1(,51nnann2.一个有穷等比数列的首项为1,项数为偶数,如果其奇数项的和为85,偶数项的和为170,求此数列的公比和项数。解析:设此数列的公比为,(1)qq,项数为2n,则22222(1)1()85,170,11nnaqqSSqq奇偶2221122,85,2256,28,14nnSaqnSa偶奇∴,2q项数为83.数列),60cos1000lg(),...60cos1000lg(),60cos1000lg(,1000lg01020n…的前多少项和为最大?解析:3(1)lg2,nnana是以3为首项,以lg2为公差的等差数列,2lg26lg2[33(1)lg2],222nnSnnn对称轴*6lg210.47,,10,112lg2nnN比较起来10更靠近对称轴∴前10项和为最大。另法:由100nnaa,得9.910.9n4.已知数列na的前n项和)34()1(...139511nSnn,求312215SSS的值。解析:(4),2,2121,(4)43,2nnnnnnSSnnnnn为偶数为偶数,,为奇数为奇数15223129,44,61,SSS15223176SSS

1 / 5
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功