4.11、细胞的吸水和失水(水往高(指溶液浓度高)处流)⑴、当外界溶液的浓度低于细胞内溶液的浓度,细胞吸收水分膨胀。⑵、当外界溶液的浓度高于细胞内溶液的浓度,细胞失去水分皱缩。⑶、当外界溶液的浓度等于细胞内溶液的浓度,水分进出细胞处于动态平衡。2、细胞内的液体环境:主要指液泡里面的细胞液。3、原生质层:指细胞膜和液泡膜以及这两层膜之间的细胞质。可以被看作是一层半透膜。4、植物细胞的质壁分离与质壁分离复原⑴、植物细胞的原生质层相当于一层半透膜。⑵、当细胞液的浓度小于外界溶液的浓度时,细胞液中的水分透过原生质层进入外界溶液,原生质层与细胞壁分离——质壁分离。⑶、发生了质壁分离的细胞的细胞液浓度大于细胞外液浓度时,外界溶液中的水分透过原生质层进入细胞液,原生质层逐渐膨胀恢复原态——质壁分离复原。5、植物细胞质壁分离的原因:⑴、外因:细胞失水。⑵、内因:原生质层的伸缩性大于细胞壁的伸缩性。6、细胞膜和其他生物膜都是选择透过性膜7、半透膜只具有半透性而不具备选择透过性;选择透过性膜具有选择透过性也具有半透性。5、质壁分离过程中,紫色洋葱表皮细胞液泡的颜色由浅变深;复原过程中反之。4.21、欧文顿(E.Overton)的发现和结论:膜是由脂质组成的。2、1925年荷兰科学家的实验发现和结论:细胞膜中的脂质分子必然排列为连续的两层。3、1959年,罗伯特森(J.D.Robertson)的发现和论断:所有的生物膜都是由“蛋白质—脂质—蛋白质”三层结构构成。4、“荧光标记的小鼠细胞和人细胞融合实验”的发现和结论(P—67图4—5)⑴、发现:两种细胞刚融合时,融合细胞一半发绿色荧光,另一半发红色荧光;370C下40min后,两种颜色的荧光均匀分布。⑵、论断:细胞膜具有流动性。5、1972年,桑格(S.J.Singer)和尼克森(G.Nicolson)提出的流动镶嵌模型的基本内容:⑴、磷脂双分子层是细胞膜的基本支架。⑵、蛋白质分子或镶或嵌入或横跨磷脂双分子层。⑶、磷脂和蛋白质分子都是可以运动的。6、糖被——糖蛋白⑴、位置:细胞膜的外侧表面。⑵、组成:蛋白质和多糖。⑶功能:细胞识别作用、信息传递等,保护和润滑作用。1、细胞膜的结构特点——流动性2、细胞膜的功能特点——选择透过性。4.3主动运输意义:保证活细胞能够按照生命活动的需要,主动选择吸收所需要的营养物质,排出代谢废物和对细胞有害的物质。物质通过细胞膜的方式细胞膜内外物质浓度的高低是否需要载体蛋白质是否消耗细胞内的能量举例自由扩散由高浓度到低浓度不需要不消耗O2、CO2、H2O、乙醇、甘油、苯等协助扩散由高浓度到低浓度需要不消耗葡萄糖进入红细胞主动运输由低浓度到高浓度需要消耗小肠吸收葡萄糖,氨基酸,无机盐等内吞、外排与浓度无关不需要消耗5.1一、细胞代谢与酶1、细胞代谢的概念:细胞内每时每刻进行着许多化学反应,统称为细胞代谢.2、活化能:分子从常态转变为容易发生化学反应的活跃状态所需要的能量。3、酶在细胞代谢中的作用:降低化学反应的活化能4、使化学反应加快的方法:加热:通过提高分子的能量来加快反应速度;加催化剂:通过降低化学反应的活化能来加快反应速度;同无机催化相比,酶能更显著地降低化学反应的活化能,因而催化效率更高。5、酶的本质:大多数酶是蛋白质;少数RNA也具有生物催化功能;6、酶的概念:酶是活细胞产生的具有催化作用的有机物,绝大多数是蛋白质,少数是RNA。5、酶的特性:专一性:每一种酶只能催化一种或一类化学反应高效性:酶的催化效率是无机催化剂的107-1013倍酶的作用条件较温和:酶在最适宜的温度和PH条件下,活性最高。二、影响酶促反应的因素(难点)(配上图示)1、底物浓度(反应物浓度);酶浓度2、PH值:过酸、过碱使酶失活3、温度:高温使酶失活。低温降低酶的活性,在适宜温度下酶活性可以恢复。5.2细胞的能量“通货”——ATP一、什么是ATP?是细胞内的一种高能磷酸化合物,中文名称叫做三磷酸腺苷二、结构简式:A-P~P~PA代表腺苷P代表磷酸基团~代表高能磷酸键三、ATP和ADP之间的相互转化的反应不可逆的原因ADP+Pi+能量ATPATPADP+Pi+能量ADP转化为ATP所需能量来源:动物和人:呼吸作用绿色植物:呼吸作用、光合作用四、ATP的利用:ATP是新陈代谢所需能量的直接来源,ATP中的能量能转化成机械能、电能,光能等各种能量;吸能反应总是与ATP水解的反应相联系,由ATP水解提供能量放能反应总是与ATP的合成相联系,释放的能量贮存在ATP中4.3ATP的主要来源——细胞呼吸1、概念:有机物在细胞内经过一系列的氧化分解,生成二氧化碳或其他产物,释放出能量并生成ATP的过程。2、有氧呼吸:主要场所:线粒体总反应式:C6H12O6+6O26CO2+6H2O+大量能量第一阶段:细胞质基质C6H12O62丙酮酸+少量[H]+少量能量第二阶段:线粒体基质2丙酮酸+6H2O6CO2+大量[H]+少量能量第三阶段:线粒体内膜24[H]+6O212H2O+大量能量有氧呼吸的概念:细胞在氧的参与下,通过酶的的催化作用,把糖类等有机物彻底氧化分解,产生出二氧化碳和水,同时释放出大量能量的过程。3、无氧呼吸:细胞质基质无氧呼吸的概念:细胞在无氧条件下,通过酶的催化作用,把葡萄糖等有机物不彻底氧化分解,产生洒精和CO2或乳酸,同时释放出少量能量的过程。大部分植物,酵母菌的无氧呼吸:C6H12O62C2H5OH+2CO2+少量能量动物,人和乳酸菌的无氧呼吸:C6H12O62乳酸+少量能量(马铃薯块茎,甜菜的块根、玉米胚的无氧呼吸也是产生乳酸)反应场所:细胞质基质注意:微生物的无氧呼吸也叫发酵,生成乳酸的叫乳酸发酵,生成酒精的叫酒精发酵讨论:①有氧呼吸及无氧呼吸的能量去路有氧呼吸:所释放的能量一部分用于生成ATP,大部分以热能形式散失了。无氧呼吸:能量小部分用于生成ATP,大部分储存于乳酸或酒精中②有氧呼吸过程中氧气的去路:氧气用于和[H]生成水4、有氧呼吸与无氧呼吸的比较:有氧呼吸无氧呼吸不同点反应条件需要O2、酶和适宜的温度不需要O2,需要酶和适宜的温度呼吸场所第一阶段在细胞质基质中,第二、三阶段在线粒体内全过程都在细胞质基质内分解产物CO2和H2OCO2、酒精或乳酸释放能量较多,1mol葡萄释放能量2870kJ,其中1161kJ转移至38molATP中1mol葡萄糖释放能量196.65kJ(生成乳酸)或222kJ(生成酒精),其中均有61.08kJ转移至2molATP中相同点其实质都是:分解有机物,释放能量,生成ATP供生命活动需要,都需要酶的催化,第一阶段(从葡萄糖到丙酮酸)完全相同相互联系第一阶段(从葡萄糖到丙酮酸)完全相同,之后在不同条件下,在不同的场所沿不同的途径,在不同的酶作用下形成不同的产物:5、探究酵母菌细胞呼吸的方式CO2的检测方法:(1)CO2使澄清石灰水变浑浊(2)CO2使溴麝香草酚蓝水溶液由蓝变绿再变黄酒精的检测方法:橙(重)铬酸钾酸变(灰)绿。6、影响呼吸作用的因素(结合曲线图)温度、含水量、O2的浓度、CO2的浓度5.4能量之源——光与光合作用一、捕获光能的色素叶绿素a(蓝绿色)叶绿素叶绿素b(黄绿色)绿叶中的色素胡萝卜素(橙黄色)类胡萝卜素叶黄素(黄色)叶绿素主要吸收红光和蓝紫光,类胡萝卜素主要吸收蓝紫光。白光下光合作用最强,其次是红光和蓝紫光,绿光下最弱。二、实验——绿叶中色素的提取和分离1实验原理:叶绿体中的色素可以溶解在无水乙醇中,可以用来提取色素。绿叶中的色素都能溶解在层析液中,且他们在层析液中的溶解度不同,溶解度高的随层析液在滤纸上扩散得快,绿叶中的色素随着层析液在滤纸上的扩散而分离开。2方法步骤中需要注意的问题:(步骤要记准确)(1)研磨时加入二氧化硅和碳酸钙的作用是什么?二氧化硅有助于研磨得充分,碳酸钙可防止研磨中的色素被破坏。(2)实验为何要在通风的条件下进行?为何要用培养皿盖住小烧杯?用棉塞塞紧试管口?因为层析液中的丙酮是一种有挥发性的有毒物质。(3)滤纸上的滤液细线为什么不能触及层析液?防止细线中的色素被层析液溶解(4)滤纸条上有几条不同颜色的色带?其排序怎样?宽窄如何?有四条色带,自上而下依次是橙黄色的胡萝卜素,黄色的叶黄素,蓝绿色的叶绿素a,黄绿色的叶绿素b。最宽的是叶绿素a,最窄的是胡萝卜素。三、捕获光能的结构——叶绿体结构:外膜,内膜,基质,基粒(由类囊体构成)与光合作用有关的酶分布于基粒的类囊体及基质中。光合作用色素分布于类囊体的薄膜上。四、光合作用的原理1、光合作用的探究历程:①、1771年,英国科学家普利斯特利证明植物可以更新空气;1779年,荷兰科学家英格豪斯证明:只有植物的绿叶在阳光下才能更新空气②、1864年,德国科学家萨克斯证明了绿色叶片在光合作用中产生淀粉;③、1880年,德国科学家恩吉尔曼证明叶绿体是进行光合作用的场所,并从叶绿体放出氧;④、20世纪30年代美国科学家鲁宾和卡门采用同位素标记法研究证明光合作用释放的氧气全部来自水。⑤、20世纪40年代美国科学家卡尔文采用同位素标记法研究探明了CO2中的碳在光合作用中转化成有机物中碳的途径2、光合作用的过程:(熟练掌握课本P103下方的图)总反应式:CO2+H2O(CH2O)+O2其中,(CH2O)表示糖类。根据是否需要光能,可将其分为光反应和暗反应两个阶段。光反应阶段:必须有光才能进行场所:类囊体薄膜上物质变化:水的光解:H2OO2+2[H]ATP形成:ADP+Pi+光能ATP能量变化:光能转化为ATP中活跃的化学能暗反应阶段:有光无光都能进行场所:叶绿体基质物质变化:CO2的固定:CO2+C52C3C3的还原:2C3+[H]+ATP(CH2O)+C5+ADP+Pi能量变化:ATP中活跃的化学能转化为(CH2O)中稳定的化学能联系:光反应为暗反应提供ATP和[H],暗反应为光反应提供合成ATP的原料ADP和Pi光合作用过程图①是H2O②是O2③[H]④是ATP⑤是ADP和Pi⑥是C3⑦是CO2⑧是C5⑨是(CH2O)五、影响光合作用的因素及在生产实践中的应用(1)光对光合作用的影响①光的波长:叶绿体中色素的吸收光波主要在红光和蓝紫光。②光照强度:植物的光合作用强度在一定范围内随着光照强度的增加而增加,但光照强度达到一定时,光合作用的强度不再随着光照强度的增加而增加③光照时间光照时间长,光合作用时间长,有利于植物的生长发育。(2)温度温度低,光合速率低。随着温度升高,光合速率加快,温度过高时会影响酶的活性,光合速率降低。生产上白天升温,增强光合作用,晚上降低室温,抑制呼吸作用,以积累有机物。(3)CO2浓度在一定范围内,植物光合作用强度随着CO2浓度的增加而增加,但达到一定浓度后,光合作用强度不再增加。生产上使田间通风良好,供应充足的CO2(4)水分的供应当植物叶片缺水时,气孔会关闭,减少水分的散失,同时影响CO2进入叶内,暗反应受阻,光合作用下降。生产上应适时灌溉,保证植物生长所需要的水分。六、化能合成作用1、概念:自然界中少数种类的细菌,虽然细胞内没有叶绿素,不能进行光合作用,但是能够利用体外环境中的某些无机物氧化时所释放的能量来制造有机物,这种合成作用,叫做化能合成作用,这些细菌也属于自养生物。如:硝化细菌2、自养生物:能够利用光能或其他能量,把CO2、H2O转变成有机物来维持自身的生命活动的生物。例如:绿色植物、硝化细菌3、异养生物:只能利用环境中现成的有机物来维持自身的生命活动的生物。例如人、动物、真菌及大多数的细菌。