2017-2018学年人教版八年级上册期末数学试卷1(解析版)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2017-2018学年人教版八年级上册期末数学试卷1一、选择题(共10小题,每小题3分,共30分)下列名题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑.1.(3分)计算:a2•a的结果是()A.aB.a2C.a3D.2a22.(3分)如图,图形中x的值为()A.65B.75C.85D.953.(3分)使分式有意义,则x满足条件()A.x>0B.x≠0C.x>1D.x≠14.(3分)如图,△OCA≌△OBD,∠1=40°,∠C=110°,则∠D=()A.30°B.40°C.50°D.无法确定5.(3分)在Rt△ABC中,∠C=90°,∠B=2∠A,则边AB与BC的关系()A.AB=BCB.AB=2BCC.AB=BCD.AB<BC6.(3分)把8m2n﹣2mn分解因式()A.2mn(4m+1)B.2m(4m﹣1)C.mn(8m﹣2)D.2mn(4m﹣1)7.(3分)如图的三角形纸片中,AB=8,BC=6,AC=5,沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,则△AED的周长是()A.7B.8C.11D.148.(3分)计算的结果是()A.B.0C.D.9.(3分)如图,△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,连CD,下列结论:①AB﹣AC=CE;②∠CDB=135°;③S△ACE=2S△CDB;④AB=3CD,其中正确的有()A.4个B.3个C.2个D.1个10.(3分)若等式恒成立,则(a2+b2﹣2ab)﹣8a+8b+17的值是()A.50B.37C.29D.26二、填空题(共6小题,每小题3分,共18分)11.(3分)如图,在等腰三角形中,它的一个底角的度数是度.12.(3分)已知△ABC≌△DEF,若△ABC的三边长分别为6cm、8cm、10cm,则△DEF的周长是cm.13.(3分)计算:(x﹣4)(x+1)=.14.(3分)如图,在△ABC中,AD是高,AE是角平分线,若∠B=72°,∠DAE=16°,则∠C=度.15.(3分)若,则=.16.(3分)如图,在平面直角坐标系中,点B、A分别在x轴、y轴上,∠BAO=60°,在坐标轴上找一点C,使得△ABC是等腰三角形,则符合条件的等腰三角形ABC有个.三、解答题(共8小题,共72分)17.(8分)解下列方程:(1)(2)18.(8分)计算:(1)(2a)3•b4÷12a3b2(2)(x﹣3y)(﹣6x)19.(8分)如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD相交于点O,OB=OC,连AO,求证:∠1=∠2.20.(8分)(1)如图1,在△ABC中,点D、E分别是AB、AC的中点,请你在BC边上确定一点P,使△PDE的周长最小.(要求:保留作图痕迹,不写作法,但要说明点P是如何确定的.)(2)如图2,∠AOB内有一定点P,试在OA、OB上各找一点D、E,使△PDE的周长最小.(要求:保留作图痕迹,不写作法,但要说明点D、E是如何确定的.)21.(8分)先化简,再求值.[(x+3y)(x﹣3y)+(2y﹣x)2+5y2(1﹣x)﹣(2x2﹣x2y)]÷(﹣xy),其中x=95,y=220.22.(10分)如图,“主收1号”小麦的试验田是边长为am(a>1)的正方形去掉一个边长为1m的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a﹣1)m的正方形,两块试验田的小麦都收获了500kg.(1)哪种小麦的单位面积产量高?(2)若高的单位面积产量是低的单位面积产量的(kg)倍,求a的值(3)利用(2)中所求的a的值,分解因式x2﹣ax﹣108=.23.(10分)已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC=3MC,请直接写出的值.24.(12分)如图,在平面直角坐标系中,A(x,0),B(0,y),其中x与y互为相反数,且x满足:x2﹣14ax+49a2=0(a>0),点C为x轴负半轴上一点,AD⊥AB,垂足为A,∠DCA=∠CBO.(1)求∠ABC+∠D的度数;(2)如图1,若点C的坐标为(﹣3a,0),求点D的坐标.(用含a的式子表示)(3)如图2,在(2)的条件下,若a=1,过点D作DE⊥y轴于E,DF⊥x轴于F,点M为线段DF上一点.若第一象限内存在点N(n,2n﹣3),使△EMN为等腰直角三角形,请直接写出符合条件的N点的坐标.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列名题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑.1.【分析】直接利用同底数幂的乘法运算法则计算得出答案.【解答】解:a2•a=a3.故选:C.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.2.【分析】根据四边形的内角和等于360°,列方程即可得到结果.【解答】解:∵四边形的内角和为(4﹣2)×180°=360°,∴x°+x°+140°+90°=360°,解得:x=65.故选:A.【点评】本题考查了四边形的内角和,熟记四边形的内角和定理是解题的关键.3.【分析】分式有意义时,分母x﹣1≠0.【解答】解:依题意得:x﹣1≠0.解得x≠1.故选:D.【点评】本题考查了分式有意义的条件.(1)分式有意义的条件是分母不等于零.(2)分式无意义的条件是分母等于零.4.【分析】根据全等三角形对应角相等解答即可.【解答】解:∵△OCA≌△OBD,∠1=40°,∠C=110°,∴∠D=∠A=180°﹣40°﹣110°=30°,故选:A.【点评】本题考查了全等三角形的性质,根据全等三角形对应顶点的字母写在对应位置上是解题的关键.5.【分析】根据题意得到∠A=30°,根据直角三角形的性质解答即可.【解答】解:∵∠C=90°,∠B=2∠A,∴∠A=30°,∴AB=2BC,故选:B.【点评】本题考查的是直角三角形的性质,掌握在直角三角形中,30°所对的直角边等于斜边的一半是解题的关键.6.【分析】直接找出公因式进而提取得出答案.【解答】解:8m2n﹣2mn=2mn(4m﹣1).故选:D.【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.7.【分析】根据翻折变换的性质得到DC=DE,BE=BC,根据已知求出AE的长,根据三角形周长公式计算即可.【解答】解:由折叠的性质可知,DC=DE,BE=BC=6,∵AB=8,∴AE=AB﹣BE=2,△AED的周长为:AD+AE+DE=AC+AE=7,答:△AED的周长为7.故选:A.【点评】本题考查的是翻折变换的知识,掌握翻折变换的性质、找准对应关系是解题的关键.8.【分析】根据分式的混合运算顺序和运算法则计算可得.【解答】解:原式=•﹣•+=﹣﹣==0,故选:B.【点评】本题主要考查分式的混合运算,分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律进行灵活运算.9.【分析】①作高线EH,先根据角平分线定理得:CE=EH,再证明△ACE≌△AHE(AAS)可得:AH=AC,根据线段的和可得结论;②先证明点A,B,D,C在以AB为直径的圆上,得∠ADC=∠ABC=45°,所以可得∠BDC=135°;③作辅助线,构建全等三角形,证明△ACE≌△BCG,根据等腰三角形三线合一得BD=DG,知道:△BDC和△CDG的面积相等,由此可得:S△ACE=S△BCG=2S△BDC;④根据③知:AB=AG=AC+CG,在△CDG中,可知CD>CG,从而得结论.【解答】解:①过点E作EH⊥AB于H,如图1,∵∠ABC=45°,∴△BHE是等腰直角三角形,∴EH=BH,∵AE平分∠CAB,∴EH=CE,∴CE=BH,在△ACE和△AHE中,∵,∴△ACE≌△AHE(AAS),∴AH=AC,∴AB﹣AC=AB﹣AH=BH=CE,故①正确;②∵∠ACB=90°,BD⊥AE于D,∴∠ACB=∠ADB=90°,∴点A,B,D,C在以AB为直径的圆上,∴∠ADC=∠ABC=45°,∴∠BDC=∠ADB+∠ADC=90°+45°=135°故②正确;③如图2,延长BD、AC交于点G,∵AD平分∠BAG,AD⊥BG,∴BD=DG,∴CD是Rt△BCG的斜边的中线,∴CD=BD,S△BCD=S△CDG,∴∠DBC=∠DCB=22.5°,∴∠CBG=∠CAE=22.5°,∵AC=BC,∠ACE=∠BCG,∴△ACE≌△BCG,∴S△ACE=S△BCG=2S△BDC,故③正确;④∵AB=AG=AC+CG,∵BG=2CD>AC,CD>CG,∴AB≠3CD,故④错误,故选:B.【点评】此题是三角形综合题,主要考查了四点共圆的判断,角平分线的性质,等腰三角形的性质和判定,全等三角形的性质和判定,解本题的关键是判断出四点共圆,是一道比较麻烦的选择题,难点是判断AB与CD的关系.10.【分析】利用分式的运算法则,列出关于a,b的二元一次方程组,求出a和b的值代入所求整式后化简即可得到答案.【解答】解:==,,解得:,(a2+b2﹣2ab)﹣8a+8b+17=(a﹣b)2﹣8(a﹣b)+17,a﹣b=﹣1,把a﹣b=﹣1代入(a﹣b)2﹣8(a﹣b)+17得:原式=1+8+17=26,故选:D.【点评】本题考查分式的加减法,正确利用分式的运算法则求出a和b的值是解题的关键.二、填空题(共6小题,每小题3分,共18分)11.【分析】根据等腰三角形的两底角相等以及三角形的内角和定理进行解答即可.【解答】解:∵等腰三角形的顶角为120°,∴底角的度数为(180°﹣120°)÷2=30°.故答案为:30.【点评】本题考查了等腰三角形的性质,解题的关键是掌握三角形的两底角相等,此题基础题,难度一般.12.【分析】先求出△ABC的周长,再根据全等三角形的周长相等解答即可.【解答】解:∵△ABC的三边长分别为6cm、8cm、10cm,∴△ABC的周长=6+8+10=24(cm),∵△ABC≌△DEF,∴△DEF的周长=△ABC的周长=24cm.故答案为:24.【点评】本题考查了全等三角形的性质,是基础题,主要利用了全等三角形的周长相等的性质.13.【分析】根据多项式乘多项式的法则计算可得.【解答】解:原式=x2+x﹣4x﹣4=x2﹣3x﹣4,故答案为:x2﹣3x﹣4.【点评】本题主要考查多项式乘多项式,解题的关键是掌握多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.14.【分析】根据三角形的内角和得出∠BAD=18°,再利用角平分线得出∠BAC=68°,利用三角形内角和解答即可.【解答】解:∵AD是高,∠B=72°,∴∠BAD=18°,∴∠BAE=18°+16°=34°,∵AE是角平分线,∴∠BAC=68°,∴∠C=180°﹣72°﹣68°=40°.故答案为:40【点评】本题考查了三角形的内角和定理,熟悉直角三角形两锐角互余和三角形的内角和等于180°是解题的关键.15.【分析】已知等式整理,用b表示出a,代入原式计算即可求出值.【解答】解:由=,得到3(a﹣b)=2(a+b),即3a﹣3b=2a+2b,∴a=5b,则原式==,故答案为:【点评】此题考查了分式的值,熟练掌握运算法则是解本题的关键.16.【分析】分类讨论:AB=AP时,AB=BP时,AP=BP时,根据两边相等的三角形是等腰三角形,可得答案.【解答】解:①当AB=AP时,在y轴上有2点满足条件的点P,在x轴上有1点满足条件的点P.②当AB=BP时,在y轴上有1点满足条件的点P,在x轴上有2点满足条件的点P,有1点与AB=AP时的x轴正半轴的点P重合.③当AP=BP

1 / 20
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功