1导导数数知知识识要要点点1.导数(导函数的简称)的定义:设0x是函数)(xfy定义域的一点,如果自变量x在0x处有增量x,则函数值y也引起相应的增量)()(00xfxxfy;比值xxfxxfxy)()(00称为函数)(xfy在点0x到xx0之间的平均变化率;如果极限xxfxxfxyxx)()(limlim0000存在,则称函数)(xfy在点0x处可导,并把这个极限叫做)(xfy在0x处的导数,记作)(0'xf或0|'xxy,即)(0'xf=xxfxxfxyxx)()(limlim0000.注:①x是增量,我们也称为“改变量”,因为x可正,可负,但不为零.②已知函数)(xfy定义域为A,)('xfy的定义域为B,则A与B关系为BA.2.函数)(xfy在点0x处连续与点0x处可导的关系:⑴函数)(xfy在点0x处连续是)(xfy在点0x处可导的必要不充分条件.可以证明,如果)(xfy在点0x处可导,那么)(xfy点0x处连续.事实上,令xxx0,则0xx相当于0x.导数导数的概念导数的运算导数的应用导数的几何意义、物理意义函数的单调性函数的极值函数的最值常见函数的导数导数的运算法则2于是)]()()([lim)(lim)(lim0000000xfxfxxfxxfxfxxxx).()(0)()(limlim)()(lim)]()()([lim000'0000000000xfxfxfxfxxfxxfxfxxxfxxfxxxx⑵如果)(xfy点0x处连续,那么)(xfy在点0x处可导,是不成立的.例:||)(xxf在点00x处连续,但在点00x处不可导,因为xxxy||,当x>0时,1xy;当x<0时,1xy,故xyx0lim不存在.注:①可导的奇函数函数其导函数为偶函数.②可导的偶函数函数其导函数为奇函数.3.导数的几何意义:函数)(xfy在点0x处的导数的几何意义就是曲线)(xfy在点))(,(0xfx处的切线的斜率,也就是说,曲线)(xfy在点P))(,(0xfx处的切线的斜率是)(0'xf,切线方程为).)((0'0xxxfyy4、几种常见的函数导数:0'C(C为常数)1')(nnnxx(Rn)xxcos)(sin'xxsin)(cos'xx1)(ln'exxaalog1)(log'xxee')(aaaxxln)('5.求导数的四则运算法则:''')(vuvu)(...)()()(...)()(''2'1'21xfxfxfyxfxfxfynn''''''')()(cvcvvccvuvvuuv(c为常数))0(2'''vvuvvuvu注:①vu,必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.例如:设xxxf2sin2)(,xxxg2cos)(,则)(),(xgxf在0x处均不可导,但它们和)()(xgxfxxcossin在0x处均可导.36.复合函数的求导法则:)()())(('''xufxfx或xuxuyy'''复合函数的求导法则可推广到多个中间变量的情形.7.函数单调性:⑴函数单调性的判定方法:设函数)(xfy在某个区间内可导,如果)('xf>0,则)(xfy为增函数;如果)('xf<0,则)(xfy为减函数.⑵常数的判定方法;如果函数)(xfy在区间I内恒有)('xf=0,则)(xfy为常数.注:①0)(xf是f(x)递增的充分条件,但不是必要条件,如32xy在),(上并不是都有0)(xf,有一个点例外即x=0时f(x)=0,同样0)(xf是f(x)递减的充分非必要条件.②一般地,如果f(x)在某区间内有限个点处为零,在其余各点均为正(或负),那么f(x)在该区间上仍旧是单调增加(或单调减少)的.8.极值的判别方法:(极值是在0x附近所有的点,都有)(xf<)(0xf,则)(0xf是函数)(xf的极大值,极小值同理)当函数)(xf在点0x处连续时,①如果在0x附近的左侧)('xf>0,右侧)('xf<0,那么)(0xf是极大值;②如果在0x附近的左侧)('xf<0,右侧)('xf>0,那么)(0xf是极小值.也就是说0x是极值点的充分条件是0x点两侧导数异号,而不是)('xf=0①.此外,函数不可导的点也可能是函数的极值点②.当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).注①:若点0x是可导函数)(xf的极值点,则)('xf=0.但反过来不一定成立.对于可导函数,其一点0x是极值点的必要条件是若函数在该点可导,则导数值为零.例如:函数3)(xxfy,0x使)('xf=0,但0x不是极值点.②例如:函数||)(xxfy,在点0x处不可导,但点0x是函数的极小值点.9.极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.注:函数的极值点一定有意义.4导数练习一、选择题1.设函数()fx在R上可导,其导函数()fx,且函数()fx在2x处取得极小值,则函数()yxfx的图象可能是2.设a0,b0,e是自然对数的底数()A.若ea+2a=eb+3b,则abB.若ea+2a=eb+3b,则abC.若ea-2a=eb-3b,则abD.若ea-2a=eb-3b,则ab3.设函数f(x)=2x+lnx则()A.x=12为f(x)的极大值点B.x=12为f(x)的极小值点C.x=2为f(x)的极大值点D.x=2为f(x)的极小值点4.设函数1()fxx,2()gxxbx.若()yfx的图象与()ygx的图象有且仅有两个不同的公共点1122(,),(,)AxyBxy,则下列判断正确的是()A.12120,0xxyyB.12120,0xxyyC.12120,0xxyyD.12120,0xxyy5.函数y=12x2㏑x的单调递减区间为()A.(1,1]B.(0,1]C.[1,+∞)D.(0,+∞)6.已知32()69,fxxxxabcabc,且()()()0fafbfc.现给出如下结论:①(0)(1)0ff;②(0)(1)0ff;③(0)(3)0ff;④(0)(3)0ff.其中正确结论的序号是()5A.①③B.①④C.②③D.②④7.已知函数1()ln(1)fxxx;则()yfx的图像大致为8.设a0,b0.()A.若2223abab,则abB.若2223abab,则abC.若2223abab,则abD.若2223abab,则ab9.设函数()fx在R上可导,其导函数为()fx,且函数(1)()yxfx的图像如题(8)图所示,则下列结论中一定成立的是()A.函数()fx有极大值(2)f和极小值(1)fB.函数()fx有极大值(2)f和极小值(1)fC.函数()fx有极大值(2)f和极小值(2)fD.函数()fx有极大值(2)f和极小值(2)f10.设函数()xfxxe,则()A.1x为()fx的极大值点B.1x为()fx的极小值点C.1x为()fx的极大值点D.1x为()fx的极小值点11.设0a且1a,则“函数()xfxa在R上是减函数”,是“函数63()(2)gxax在R上是增函数”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件12.已知函数33yxxc的图像与x轴恰有两个公共点,则c()A.2或2B.9或3C.1或1D.3或1二、填空题13.曲线(3ln1)yxx在点(1,1)处的切线方程为________14.曲线33yxx在点1,3处的切线方程为___________________.三、解答题15.已知函数3()fxaxbxc在2x处取得极值为16c(1)求a、b的值;(2)若()fx有极大值28,求()fx在[3,3]上的最大值.16.已知a∈R,函数3()42fxxaxa(1)求f(x)的单调区间(2)证明:当0≤x≤1时,f(x)+2a0.17.已知函数3211()(0)32afxxxaxaa(I)求函数)(xf的单调区间;(II)若函数)(xf在区间(2,0)内恰有两个零点,求a的取值范围;(III)当1a时,设函数)(xf在区间]3,[tt上的最大值为()Mt,最小值为()mt,记()()()gtMtmt,求函数()gt在区间]1,3[上的最小值.18.设函数()(,,)nnfxxbxcnNbcR(1)设2n,1,1bc,证明:()nfx在区间1,12内存在唯一的零点;(2)设n为偶数,(1)1f,(1)1f,求b+3c的最小值和最大值;7