江苏省无锡市惠山区2016届九年级上学期期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)1.若=,则的值为()A.B.C.1D.2.下列方程有实数根的是()A.x2+10=0B.x2+x+1=0C.x2﹣x﹣1=0D.x2﹣x+1=03.已知:在Rt△ABC中,∠C=90°,sinA=,则cosB的值为()A.B.C.D.4.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分B.84分C.84.5分D.86分5.某圆锥的母线长为6cm,其底面圆半径为3cm,则它的侧面积为()A.18πcm2B.18cm2C.36πcm2D.36cm26.已知:⊙O是△ABC的外接圆,∠OAB=40°,则∠ACB的大小为()A.20°B.50°C.20°或160°D.50°或130°7.将一副三角板按图叠放,则△AOB与△COD的面积之比为()A.1:B.1:3C.1:D.1:28.如图是由7个形状、大小完全相同的正六边形组成的网格,正六边形的各顶点称为格点,直角△ABC的顶点均在格点上,则满足条件的点C有()A.6个B.8个C.10个D.12个9.如图,在矩形ABCD中,AB=3,BC=5,以B为圆心BC为半径画弧交AD于点E,连接CE,作BF⊥CE,垂足为F,则tan∠FBC的值为()A.B.C.D.10.如图,二次函数y=ax2+c的图象与一次函数y=kx+c的图象在第一象限的交点为A,点A的横坐标为1,则关于x的不等式ax2﹣kx<0的解集为()A.0<x<1B.﹣1<x<0C.x<0或x>1D.x<﹣1或x>0二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置)11.方程2x2+4x﹣1=0的两根为x1,x2,则x1+x2=.12.若△ABC∽△ACD,AB=1,AD=4,则AC=.13.在等腰Rt△ABC中,AB=AC,则tanB=.14.如图,AB为⊙O的弦,AB=8,OA=5,OP⊥AB于P,则OP=.15.将二次函数y=x2﹣2x+3的图象先向上平移2个单位,再向右平移3个单位后,所得新抛物线的顶点坐标为.16.已知二次函数y=﹣x2+bx+c,当2<x<5时,y随x的增大而减小,则实数b的取值范围是.17.如图,扇形OMN与正方形ABCD,半径OM与边AB重合,弧MN的长等于AB的长,已知AB=2,扇形OMN沿着正方形ABCD逆时针滚动到点O首次与正方形的某顶点重合时停止,则点O经过的路径长.18.已知:等边△ABC的边长为2,点D为平面内一点,且BD=AD=2,则CD=.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)(﹣)2+|﹣2|﹣(﹣2)0;(2)(x+2)2﹣2(x+2).20.(1)解不等式:3(x+2)<5x;(2)解方程:x2﹣2x﹣1=0.21.甲、乙两支仪仗队各10名队员的身高(单位:cm)如下表:甲队179177178177178178179179177178乙队178178176180180178176179177178(1)甲队队员的平均身高为cm,乙队队员的平均身高为cm;(2)请用你学过的统计知识判断哪支仪仗队的身高更为整齐呢?22.在一个不透明的口袋中,放有三个标号分别为1,2,3的质地、大小都相同的小球.任意摸出一个小球,记为x,再从剩余的球中任意摸出一个小球,又记为y,得到点(x,y).(1)用画树状图或列表等方法求出点(x,y)的所有可能情况;(2)求点(x,y)在二次函数y=ax2﹣4ax+c(a≠0)图象的对称轴上的概率.23.已知:如图,AB是⊙O的直径,AB=6,点C,D在⊙O上,且CD平分∠ACB,∠CAB=60°.(1)求BC及阴影部分的面积;(2)求CD的长.24.如图,铜亭广场装有智能路灯,路灯设备由灯柱AC与支架BD共同组成(点C处装有安全监控,点D处装有照明灯),灯柱AC为6米,支架BD为2米,支点B到A的距离为4米,AC与地面垂直,∠CBD=60°.某一时刻,太阳光与地面的夹角为45°,求此刻路灯设备在地面上的影长为多少?25.某公司销售一种进价为20(元/个)的计算器,其销售量y(万个)与销售价格x(元/个)之间为一次函数关系,其变化如下表:价格x(元/个)…3050…销售量y(万个)…53…同时,销售过程中的其他开支(不含进价)总计40万元.若该公司要获得40万元的净利润,且尽可能让顾客得到实惠,那么销售价格应定为多少?(注:净利润=总销售额﹣总进价﹣其他开支)26.如图①,ABCD是边长为60cm的正方形硬纸片,切去四个全等的等腰直角三角形(阴影部分所示),其中E,F在AB上;再沿虚线折起,点A,B,C,D恰好重合于点O处(如图②所示),形成有一个底面为正方形GHMN的包装盒,设AE=x(cm).(1)求线段GF的长;(用含x的代数式表示)(2)当x为何值时,矩形GHPF的面积S(cm2)最大?最大面积为多少?(3)试问:此种包装盒能否放下一个底面半径为15cm,高为10cm的圆柱形工艺品,且使得圆柱形工艺品的一个底面恰好落在图②中的正方形GHMN内?若能,请求出满足条件的x的值或范围;若不能,请说明理由.27.如图,在平面直角坐标系中,半径为1的⊙A的圆心与坐标原点O重合,线段BC的端点分别在x轴与y轴上,点B的坐标为(6,0),且sin∠OCB=.(1)若点Q是线段BC上一点,且点Q的横坐标为m.①求点Q的纵坐标;(用含m的代数式表示)②若点P是⊙A上一动点,求PQ的最小值;(2)若点A从原点O出发,以1个单位/秒的速度沿折线OBC运动,到点C运动停止,⊙A随着点A的运动而移动.①点A从O→B的运动的过程中,若⊙A与直线BC相切,求t的值;②在⊙A整个运动过程中,当⊙A与线段BC有两个公共点时,直接写出t满足的条件.28.如图,在平面直角坐标系中,O是坐标原点,二次函数y=x2+c的图象抛物线交x轴于点A,B(点A在点B的左侧),与y轴交于点C(0,﹣3).(1)求∠ABC的度数;(2)若点D是第四象限内抛物线上一点,△ADC的面积为,求点D的坐标;(3)若将△OBC绕平面内某一点顺时针旋转60°得到△O′B′C′,点O′,B′均落在此抛物线上,求此时O′的坐标.江苏省无锡市惠山区2016届九年级上学期期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)1.若=,则的值为()A.B.C.1D.【考点】比例的性质.【分析】根据等式的性质,可用x表示y,根据分式的性质,可得答案.【解答】解:由=,得y=x.===,故选:B.【点评】本题考查了比例的性质,利用等式的性质得出y=x是解题关键,又利用了分式的性质.2.下列方程有实数根的是()A.x2+10=0B.x2+x+1=0C.x2﹣x﹣1=0D.x2﹣x+1=0【考点】根的判别式.【分析】根据一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根,分别进行判断即可.【解答】解:A、因为方程x2+10=0,所以x2=﹣10,没有实数根,故本选项错误;B、△=1﹣4<0,方程没有实数根,故本选项错误;C、△=1+4>0,方程有实数根,故本选项正确;D、△=2﹣4<0,方程没有实数根,故本选项错误;故选C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.3.已知:在Rt△ABC中,∠C=90°,sinA=,则cosB的值为()A.B.C.D.【考点】互余两角三角函数的关系.【分析】根据一个角的正弦等于它余角的余弦,可得答案.【解答】解:在Rt△ABC中,∠C=90°得∠B+∠A=90°.由一个角的正弦等于它余角的余弦,得cosB=sinA=,故选:B.【点评】本题考查了互余两角三角函数的关系,利用一个角的正弦等于它余角的余弦是解题关键.4.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分B.84分C.84.5分D.86分【考点】加权平均数.【专题】计算题.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:85×+80×+90×=17+24+45=86(分),故选D【点评】此题考查了加权平均数,熟练掌握加权平均数的求法是解本题的关键.5.某圆锥的母线长为6cm,其底面圆半径为3cm,则它的侧面积为()A.18πcm2B.18cm2C.36πcm2D.36cm2【考点】圆锥的计算.【专题】计算题.【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式计算.【解答】解:圆锥的侧面积=×2π×3×6=18π(cm2).故选A.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.6.已知:⊙O是△ABC的外接圆,∠OAB=40°,则∠ACB的大小为()A.20°B.50°C.20°或160°D.50°或130°【考点】圆周角定理.【专题】分类讨论.【分析】由OA=OB,可求得∠OBA=∠OAB=40°,继而求得∠AOB的度数,然后由圆周角定理,求得答案.【解答】解:∵OA=OB,∴∠OBA=∠OAB=40°,∴∠AOB=180°﹣∠OAB﹣∠OBA=100°,∴∠ACB=∠AOB=50°.当点C在点C′的位置时,∠AC′B=180°﹣50°=130°.故选D.【点评】本题考查的是圆周角定理,根据题意画出图形,利用数形结合求解是解答此题的关键.7.将一副三角板按图叠放,则△AOB与△COD的面积之比为()A.1:B.1:3C.1:D.1:2【考点】相似三角形的判定与性质.【分析】结合图形可推出△AOB∽△COD,只要求出AB与CD的比就可知道它们的面积比,我们可以设BC为a,则AB=a,根据直角三角函数,可知DC=a,即可得△AOB与△COD的面积之比.【解答】解:∵直角三角板(含45°角的直角三角板ABC及含30°角的直角三角板DCB)按图示方式叠放∴∠D=30°,∠A=45°,AB∥CD∴∠A=∠OCD,∠D=∠OBA∴△AOB∽△COD设BC=a∴CD=a∴S△AOB:S△COD=1:3故选B.【点评】本题主要考查相似三角形的判定及性质、直角三角形的性质等,本题关键在于找到相关的相似三角形.8.如图是由7个形状、大小完全相同的正六边形组成的网格,正六边形的各顶点称为格点,直角△ABC的顶点均在格点上,则满足条件的点C有()A.6个B.8个C.10个D.12个【考点】正多边形和圆.【分析】根据正六边形的性质,分AB是直角边和斜边两种情况确定出点C的位置即可得解.【解答】解:如图,AB是直角边时,点C共有6个位置,即,有6个直角三角形,AB是斜边时,点C共有4个位置,即有4个直角三角形,综上所述,△ABC是直角三角形的个数有6+4=10个.故选:C.【点评】本题考查了正多边形和圆,难点在于分AB是直角边和斜边两种情况讨论,熟练掌握正六边形的性质是解题的关键,作出图形更形象直观.9.如图,在矩形ABCD中,AB=3,BC=5,以B为圆心BC为半径画弧交AD于点E,连接CE,作BF⊥CE,垂足为F,则tan∠FBC的值为()A.B.C.D.【考点】勾股定理;等腰三角形的判定与性质;矩形的性质;