我国居民消费价格指数时间序列模型与预测摘要:居民消费价格指数CPI是具有重要经济意义的指标,它的增长具有一定的内在规律性,而大多数经济时间序列存在惯性或者说是迟缓性,通过对这种惯性的分析可以由时间序列的当前值和过去值对未来值进行预测。本文利用了ARMA模型对我国1993年8月—2014年10月的月度CPI的时间序列数据进行建模分析,并利用所建立的模型对我国的居民消费价格指数进行了短期预测。关键词:CPIARMA模型时间序列预测时间序列预测是通过对预测目标自身时间序列的处理来研究其变化趋势的。即通过时间序列的历史数据揭示现象随时间变化的规律,将这种规律延伸到未来从而对该现象的未来作出预测。文中所用的ARMA模型是目前最常用的随机时间序列拟合模型。其基本思想是:某些时间序列是依赖于时间t的一组随机变量,构成该时序的单个序列值虽然具有不确定性。但整个序列的变化却有一定的规律性,可以用相应的数学模型近似描述。通过对该数学模型的分析研究,能够更本质地认识时间序列的结构与特征达到最小方差意义下的最优预测。研究我国的居民消费价格指数CPI的统计规律性和变动趋势,对于我国相关的经济发展政策有特别重要的意义。本文利用我国1993年8月—2014年10月的月度CPI历史数据为样本,利用在研究一个国家或地区经济和商业预测中比较先进适用的时间序列模型之一的ARMA模型对样本进行统计分析,以揭示我国居民消费价格指数CPI变化的内在规律性,并进行后期预测。一、数据预处理1.平稳性检验(1)时序图96100104108112116120124128255075100125150175200225250居民消费价格指数(上年同月=100)从上图可知,该数据有截距项,无明显变动趋势。(2)ADF单位根检验NullHypothesis:CPIhasaunitrootExogenous:ConstantLagLength:12(Automatic-basedonSIC,maxlag=15)t-StatisticProb.*AugmentedDickey-Fullerteststatistic-4.7980750.0001Testcriticalvalues:1%level-3.4572865%level-2.87328910%level-2.573106*MacKinnon(1996)one-sidedp-values.AugmentedDickey-FullerTestEquationDependentVariable:D(CPI)Method:LeastSquaresDate:11/26/14Time:22:25Sample(adjusted):14255Includedobservations:242afteradjustmentsVariableCoefficientStd.Errort-StatisticProb.CPI(-1)-0.0320850.006687-4.7980750.0000D(CPI(-1))0.1683830.0531343.1690210.0017D(CPI(-2))0.0757100.0533471.4191910.1572D(CPI(-3))0.0433810.0532180.8151670.4158D(CPI(-4))0.1069930.0531572.0127670.0453D(CPI(-5))0.0592080.0526981.1235340.2624D(CPI(-6))0.0227020.0521430.4353740.6637D(CPI(-7))0.0779840.0513911.5174690.1305D(CPI(-8))0.1125750.0512732.1956070.0291D(CPI(-9))0.0285000.0515860.5524760.5812D(CPI(-10))-0.0392580.051568-0.7612950.4473D(CPI(-11))0.2105990.0514514.0931880.0001D(CPI(-12))-0.4817730.049770-9.6800530.0000C3.2611750.6932664.7040720.0000R-squared0.474112Meandependentvar-0.100000AdjustedR-squared0.444127S.D.dependentvar0.690841S.E.ofregression0.515070Akaikeinfocriterion1.567081Sumsquaredresid60.48765Schwarzcriterion1.768920Loglikelihood-175.6168Hannan-Quinncriter.1.648389F-statistic15.81172Durbin-Watsonstat2.004497Prob(F-statistic)0.000000由检验结果可知,在5%的置信度水平下,p=0.00010.05,通过单位根检验,数据平稳。二、.参数估计Date:11/26/14Time:22:24Sample:1255Includedobservations:255AutocorrelationPartialCorrelationACPACQ-StatProb.|*******.|*******10.9860.986250.740.000.|********|.|20.968-0.151493.240.000.|********|.|30.945-0.133725.650.000.|********|.|40.920-0.077946.840.000.|******|*|.|50.891-0.1381155.00.000.|******|*|.|60.857-0.1301348.50.000.|******|*|.|70.819-0.1451525.70.000.|******|.|.|80.778-0.0191686.50.000.|*****|.|.|90.736-0.0321830.90.000.|*****|.|.|100.693-0.0031959.40.000.|*****|.|.|110.649-0.0142072.40.000.|****|.|.|120.602-0.0652170.30.000.|****|.|*|130.5590.1372254.90.000.|****|.|.|140.516-0.0232327.30.000.|***|.|.|150.473-0.0242388.30.000.|***|.|.|160.431-0.0062439.20.000.|***|.|*|170.3920.0882481.50.000.|***|.|.|180.3550.0262516.40.000.|**|.|.|190.3220.0142545.20.000.|**|.|.|200.2900.0112568.70.000.|**|.|.|210.261-0.0042587.70.000.|**|.|.|220.233-0.0542603.00.000.|*|.|.|230.207-0.0082615.00.000.|*|.|.|240.1840.0302624.60.000.|*|.|.|250.1650.0522632.40.000.|*|*|.|260.146-0.0702638.50.000.|*|.|.|270.1290.0042643.30.000.|*|.|.|280.113-0.0422647.00.000.|*|.|.|290.098-0.0102649.80.000.|*|.|.|300.085-0.0092651.90.000.|.|.|.|310.072-0.0492653.40.000.|.|.|.|320.059-0.0112654.40.000.|.|.|.|330.046-0.0252655.00.000.|.|.|.|340.0340.0082655.30.000.|.|.|.|350.0230.0022655.50.000.|.|.|.|360.0110.0062655.50.000由自相关与偏自相关图可知,自相关函数拖尾,偏自相关函数一阶截尾,可建立ar(1)模型三、模型估计1.带截距项的ar(1)模型DependentVariable:CPIMethod:LeastSquaresDate:11/26/14Time:22:26Sample(adjusted):2255Includedobservations:254afteradjustmentsConvergenceachievedafter4iterationsVariableCoefficientStd.Errort-StatisticProb.C99.998774.16048524.035360.0000AR(1)0.9865170.007274135.62690.0000R-squared0.986486Meandependentvar104.2622AdjustedR-squared0.986432S.D.dependentvar6.356552S.E.ofregression0.740426Akaikeinfocriterion2.244660Sumsquaredresid138.1540Schwarzcriterion2.272513Loglikelihood-283.0718Hannan-Quinncriter.2.255865F-statistic18394.65Durbin-Watsonstat1.288678Prob(F-statistic)0.000000InvertedARRoots.992.不带截距项的ar(1)模型DependentVariable:CPIMethod:LeastSquaresDate:11/26/14Time:22:26Sample(adjusted):2255Includedobservations:254afteradjustmentsConvergenceachievedafter2iterationsVariableCoefficientStd.Errort-StatisticProb.AR(1)0.9993930.0004462238.8260.0000R-squared0.986317Meandependentvar104.2622AdjustedR-squared0.986317S.D.dependentvar6.356552S.E.ofregression0.743558Akaikeinfocriterion2.249190Sumsquaredresid139.8783Schwarzcriterion2.263116Loglikelihood-284.6471Hannan-Quinncriter.2.254792Durbin-Watsonstat1.289265InvertedARRoots1.00由上面两图可知,在5%的置信度水平下,两模型均可用来做预测,通过比较DW值带截距项的ar(1)模型DW=1.288678不带截距项的ar(1)模型DW=1.289265故选择带截距项的ar(1)模型,该模型为:CPIt=99.9987705992+0.986517414049*CPIt-1四、模型的适用性检验9698100102104106256257258259260261262263264265CPIF?2S.E.-3-2-10123255075100125150175200225250RESID01通过对残差序列做检验,序列在围绕0上下波动,且在-3到3的有界范围波动,无明显趋势,故残差序列不存在相关性,估计的模型可以用来做预测。五、模型预测2014年11月101.57841132014年12月101.5571