1第六章热力学计算热力学以及化学热力学是迄今发展得最为完善和普遍适用的一门理论性学科,在包括无机非金属材料在内的众多学科领域中有着广泛的应用。它在理论上解决了有关体系复杂过程发生的方向性和平衡条件,以及伴随该过程体系能量变化等问题。它对探讨各种无机材料系统的具体过程,如烧成、烧结、腐蚀、水化反应等,都有着巨大的科学研究和生产实践方面的指导意义。第一节:热化学计算一.热效应1.热效应的定义在恒温条件下只作体积功而不作其他功,系统吸热或放热的现象称为热效应,如化学反应和相变中吸热或放热。恒容热效应:QV=△U+P△V=△U恒压热效应:QP=△U+P△V=△(U+PV)=△H热焓是在恒压条件下发挥作用的特性函数。反应物产物)H()H(H0i,298f,i0i,298f,i0298R,2.盖斯定律232123222212222HHHHSiO2CaO-H2CaOSiO-SiO-HOSi2CaOHO2CaSiO2CaO-SiO2CaO-H2OSi2Ca根据盖斯定律:应来生成:也可以通过下列几步反反应:3.热效应与温度的关系2112P,R,R2iP,iP,P2PPRCcTbTa)C()C(CcTbTa(T)C)(CdTHdTTTTiidT反应物产物恒压热容三.热化学计算举例7654321)(27)(26)(2521)(24)(23)(2)()(2)(2)(221323229822982.21323211002110022lblbSbSbSbSSblbSSbSiOOPKSiOOPKSiOOPKSiOOPKSiOOPKSiOOPKSiOOPSiOOP第二节热力学计算一.熵判据1.对于孤立系统,当熵变△S>0时,过程自发进行。32.对于一般非孤立系统,要考虑到环境熵变。△S(总)=△S(系)+△S(环)0时,过程自发进行△S(总)=△S(系)+△S(环)=0时,系统处于平衡状态。二.自由焓判据1.不发生化学反应或相变的物系),(TPfGSdTVdPdTSdPVdudGTSPVuGVPTdSWQWQdu可可2.对于发生化学反应或相变的物系00,0)(0dT0:)()()()......,,,(,,,,,,21,反应不能进行。,反应处于平衡状态;=反应自发进行;所以:当,反应在恒温恒压下进行dGdGdGdndniniGdGdPdniniGdTTGdPPGdGnnnTPfGiinjTPnjTPniPniTi三.化学反应标准自由焓变化0RG计算1.在298K时化学反应标准自由焓变化:40298,0298,0298,0,298,0,298,0298,G)G()G(GRRRifiifiRST=或反应物产物2.在任意温度下求)(G0,TfTR(1)经典法)(GG298/2/298298)2982/(2/298298ln298/)G(2/12/1lnG)()(/GG0T009820298,20298,02009821200T0,20,02T2980298,0,20,0TfyCHcbaHcbayyTCTbTTaTCdTHdydTTHTCTbTaCdTCHHTHTTRPRRRRRPTRTRRPPRTRTRPR=、求求求计算步骤:求=得:常数;=其中:,,,,(2)热力学势函数法5反应物产物)()(G)(GGG''',',0298,0,2980298029800298000298002980'00298002980000TiTiTRTRRTRTPTTPTTTRTTTRTTRTHdTTCSSTfdTCHHTTSHHTHTTSHHTHTSH四.反应物系处于任意状态RG求法dDcCbBaA理想气体:PiRTuuTigiln)(0)(XiRTuiPiRTuiPiRTuuuPTiTiTigililnRTlnXlnX)(ln),(0)()(0)(0)()(纯纯对于一般实际溶液:)(活度纯纯纯iiiiiPiXPiPPXiPii的大小,描述了实际溶液和理想溶液的偏差程度。为任意确定的标准态00/iiiPPPi因此活度随选定的标准态改变。6以拉乌尔定律为基础,选Pi纯为标态,Xi取摩尔分数。实际溶液:iPTiiiTiiiTigiRTuPRTRTuPRTuulnlnlnln),(00)(00)(0)(化学反应RG的计算:dDcCbBaABb'Aa'Dd'Cc'0Bb'Aa'Dd'Cc'0000'0lnlnlnaaaaRTGGaaaaRTbuauducuGaRTuubuauducuGdudGRRBADCRiiiBADCRniiR)(例如:)()()()(glSdDcCbBaA溶液1aB1aA1atmlnln0BB0AA'0'0为标准态,体在该温度和压力下纯液以拉乌尔定律为基础,为标准态,体在该温度和压力下纯固以拉乌尔定律为基础,为标准态取分压为BuuAuuDPRTuuaRTuuDDDccC平衡态或)(lnlnlnBb'Aa'Dd'Cc'00Dd'Cc'0PaPaKKRTGKRTGPaRTGGaaRpRRR第三节热力学计算举例一.纯固相反应的热力学计算7反应物、产物以纯固态存在,且相互不溶解。)(00TfuGGiiRR二.有气相参与的固相反应的热力学计算1.CaCO3的分解反应)(2)()(3gSSCOCaOCaCO(1)判据:)(TfG(2)分解压:反应平衡分压_____lnln)ln(2202'02'2030032gCOgCORgCORgCOgCOSCaCOCaOSSCaCOgCOCaOSRPPRTGPRTGPRTuuuuuuG,反向进行,自发分解开始分解应能否进行:可以用分解压来判断反000lnln2'22'22'22'2GPPGPPGPPPRTPRTGgCOgCOgCOgCOgCOgCOgCOgCOR(3)求开始分解温度求标准条件下分解温度:固相a=1,气相CO2的P’CO2=1atm,则:K11230)(可得分解温度为TfGGROR求大气中CaCO3的开始分解温度:CO2含量为0.03%,Pi=yiP总,设P总=1atm0003.0lnln)(0ln202'0RTPRTTfGPRTGGgCORgCORR=已知T=803K8求强烈分解温度(化学沸腾温度):此时分解压=外界总压,设外界总压=1atm,由f(T)=0,可求得T。化学沸腾温度随外界总压而变。三.有熔体参与的固相反应的热力学计算分析用刚玉坩埚熔制纯镍熔体的可能性四.氧化物的热力学稳定性2'22022)()(lnlnlnln22OOROPROPgSSPRTPRTGPRTKRTGPKMMOOMMO互不溶解、RG0的绝对值越大,越易分解。)(2)(22SgSMOOM该反应的自由焓变化定义为氧化物生成自由焓,参加反应的O2为1mol。2222220103012212022210121)/=(两式相减得:GGGOMMOMMGOMOMGMOMSSSSSSOSS由30G的大小,可比较M2O和M1O的热力学稳定性大小。氧化物的热力学稳定性是指元素对氧的亲和力的大小。亲和力越大,越易形成氧化物,其氧化物热力学稳定性越大。因此,比较氧化物热力学稳定性的大小,实质是比较元素的氧化还原能力大小。可用0G-T图,比较氧化物热力学稳定性。相变将影响氧化物的热力学稳定性。OOOOOOOSTHGSSTHG298298TT变化很小,与因为9当固气相变或液气相变时,很大。和SH如:000O20)(0)(00O20)(0)(0020103)()(g02g01)()(022022222M02M2M0222M前后后液前)()((液)(液)----可得:《===---相变后:---变:相相变前:SSSSSSSSSSMOOMOOgMsMOMsMOSgSg