应用LINGOMATLAB软件求解线性规划.

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

一、应用LINGO软件求解线性规划•优化模型简介•LINDO公司的主要软件产品及功能简介•LINGO软件的使用简介优化模型实际问题中的优化模型mixgtsxxxxfzMaxMiniTn,2,1,0)(..),(),()(1或x~决策变量f(x)~目标函数gi(x)0~约束条件数学规划线性规划(LP)二次规划(QP)非线性规划(NLP)纯整数规划(PIP)混合整数规划(MIP)整数规划(IP)0-1整数规划一般整数规划连续规划LINGO软件是美国的LINDO系统公司(LindoSystemInc)开发的一套用于求解最优化问题的软件包。LINGO除了能用于求解线性规划和二次规划外,还可以用于非线性规划求解以及一些线性和非线性方程(组)的求解等。LINGO软件的最大特色在于它允许优化模型中的决策变量为整数,而且执行速度快。LINGO内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果,这里简单介绍LINGO的使用方法。LINGO可以求解线性规划、二次规划、非线性规划、整数规划、图论及网络优化和排队论模型中的最优化问题等。LINGO软件简介一个LINGO程序一般会包含集合段、数据输入段、优化目标和约束段、初始段和数据预处理段等部分,每一部分有其独特的作用和语法规则,读者可以通过查阅相关的参考书或者LINGO的HELP文件详细了解,这里就不展开介绍了。LINGO的主要功能特色为:既能求解线性规划问题,也有较强的求解非线性规划问题的能力;输入模型简练直观;运算速度快、计算能力强;内置建模语言,提供几十个内部函数,从而能以较少语句,较直观的方式描述大规模的优化模型;将集合的概念引入编程语言,很容易将实际问题转换为LINGO模型;并且能方便地与Excel、数据库等其他软件交换数据。一个简单的LINGO程序例1直接用LINGO来解如下二次规划问题:40,322100..123.02779821212122212121为整数xxxxxxtsxxxxxxMax输入窗口如下:程序语句输入的备注:•LINGO总是根据“MAX=”或“MIN=”寻找目标函数,而除注释语句和TITLE语句外的其他语句都是约束条件,因此语句的顺序并不重要。•限定变量取整数值的语句为“@GIN(X1)”和“@GIN(X2)”,不可以写成“@GIN(2)”,否则LINGO将把这个模型看成没有整数变量。•LINGO中函数一律需要以“@”开头,其中整型变量函数(@BIN、@GIN)和上下界限定函数(@FREE、@SUB、@SLB)与LINDO中的命令类似。而且0/1变量函数是@BIN函数。输出结果:运行菜单命令“LINGO|Solve”最优整数解X=(35,65)最大利润=11077.5输出结果备注:通过菜单“WINDOW|StatusWindow”看到状态窗口,可看到最佳目标值“BestObj”与问题的上界“ObjBound”已经是一样的,当前解的最大利润与这两个值非常接近,是计算误差引起的。如果采用全局最优求解程序(后面介绍),可以验证它就是全局最优解。LINGO是将它作为PINLP(纯整数非线性规划)来求解,因此找到的是局部最优解。一个简单的LINGO程序LINGO的基本用法的几点注意事项•LINGO中不区分大小写字母;变量和行名可以超过8个字符,但不能超过32个字符,且必须以字母开头。•用LINGO解优化模型时已假定所有变量非负(除非用限定变量取值范围的函数@free或@sub或@slb另行说明)。•变量可以放在约束条件的右端(同时数字也可放在约束条件的左端)。但为了提高LINGO求解时的效率,应尽可能采用线性表达式定义目标和约束(如果可能的话)。•语句是组成LINGO模型的基本单位,每个语句都以分号结尾,编写程序时应注意模型的可读性。例如:一行只写一个语句,按照语句之间的嵌套关系对语句安排适当的缩进,增强层次感。•以感叹号开始的是说明语句(说明语句也需要以分号结束)。•LINGO的语法规定:•(1)求目标函数的最大值或最小值分别用MAX=…或MIN=…来表示;•(2)每个语句必须以分号“;”结束,每行可以有许多语句,语句可以跨行;•(3)变量名称必须以字母(A~Z)开头,由字母、数字(0~9)和下划线所组成,长度不超过32个字符,不区分大小写;•(4)可以给语句加上标号,例如[OBJ]MAX=200*X1+300*X2;•(5)以惊叹号“!”开头,以分号“;”结束的语句是注释语句;•(6)如果对变量的取值范围没有作特殊说明,则默认所有决策变量都非负;•(7)LINGO模型以语句“MODEL:”开头,以“END”结束,对于比较简单的模型,这两个语句可以省略。掌握集合(SETS)的应用;正确阅读求解报告;正确理解求解状态窗口;学会设置基本的求解选项(OPTIONS);掌握与外部文件的基本接口方法需要掌握的几个重要方面集合的基本用法和LINGO模型的基本要素理解LINGO建模语言最重要的是理解集合(Set)及其属性(Attribute)的概念。例2.SAILCO公司需要决定下四个季度的帆船生产量。下四个季度的帆船需求量分别是40条,60条,75条,25条,这些需求必须按时满足。每个季度正常的生产能力是40条帆船,每条船的生产费用为400美元。如果加班生产,每条船的生产费用为450美元。每个季度末,每条船的库存费用为20美元。假定生产提前期为0,初始库存为10条船。如何安排生产可使总费用最小?用DEM,RP,OP,INV分别表示需求量、正常生产的产量、加班生产的产量、库存量,则DEM,RP,OP,INV对每个季度都应该有一个对应的值,也就说他们都应该是一个由4个元素组成的数组,其中DEM是已知的,而RP,OP,INV是未知数。问题的模型(可以看出是LP模型)目标函数是所有费用的和4,3,2,1)}(20)(450)(400{MINIIINVIOPIRP约束条件主要有两个:1)能力限制:4,3,2,1,40)(RPII2)产品数量的平衡方程:4,3,2,1),()()()1()(IIDEMIOPIRPIINVIINV10)0(INV加上变量的非负约束注:LINDO中没有数组,只能对每个季度分别定义变量,如正常产量就要有RP1,RP2,RP3,RP44个变量等。写起来就比较麻烦,尤其是更多(如1000个季度)的时候。记四个季度组成的集合QUARTERS={1,2,3,4},它们就是上面数组的下标集合,而数组DEM,RP,OP,INV对集合QUARTERS中的每个元素1,2,3,4分别对应于一个值。LINGO正是充分利用了这种数组及其下标的关系,引入了“集合”及其“属性”的概念,把QUARTERS={1,2,3,4}称为集合,把DEM,RP,OP,INV称为该集合的属性(即定义在该集合上的属性)。•QUARTERS集合的属性•DEM•RP•OP•INV•QUARTERS集合•2•3•4•1集合及其属性集合元素及集合的属性确定的所有变量集合QUARTERS的元素1234定义在集合QUARTERS上的属性DEMDEM(1)DEM(2)DEM(3)DEM(4)RPRP(1)RP(2)RP(3)RP(4)OPOP(1)OP(2)OP(3)OP(4)INVINV(1)INV(2)INV(3)INV(4)LINGO中定义集合及其属性LP模型在LINGO中的一个典型输入方式以“MODEL:”开始以“END”结束集合定义部分从(“SETS:”到“ENDSETS”):定义集合及其属性集合定义部分从(“DATA:”到“ENDDATA”)给出优化目标和约束2020/1/118目标函数的定义方式@SUM(集合(下标):关于集合的属性的表达式)对语句中冒号“:”后面的表达式,按照“:”前面的集合指定的下标(元素)进行求和。本例中目标函数也可以等价地写成@SUM(QUARTERS(i):400*RP(i)+450*OP(i)+20*INV(i)),“@SUM”相当于求和符号“∑”,“QUARTERS(i)”相当于“iQUARTERS”的含义。由于本例中目标函数对集合QUARTERS的所有元素(下标)都要求和,所以可以将下标i省去。约束的定义方式循环函数@FOR(集合(下标):关于集合的属性的约束关系式)对冒号“:”前面的集合的每个元素(下标),冒号“:”后面的约束关系式都要成立本例中,每个季度正常的生产能力是40条帆船,这正是语句“@FOR(QUARTERS(I):RP(I)40);”的含义。由于对所有元素(下标I),约束的形式是一样的,所以也可以像上面定义目标函数时一样,将下标i省去,这个语句可以简化成“@FOR(QUARTERS:RP40);”。本例中,对于产品数量的平衡方程,由于下标i=1时的约束关系式与i=2,3,4时有所区别,所以不能省略下标“i”。实际上,i=1时要用到变量INV(0),但定义的属性变量中INV不包含INV(0)(INV(0)=10是一个已知的)。为了区别i=1和i=2,3,4,把i=1时的约束关系式单独写出,即“INV(1)=10+RP(1)+OP(1)-DEM(1);”;而对i=2,3,4对应的约束,对下标集合的元素(下标i)增加了一个逻辑关系式“i#GT#1”(这个限制条件与集合之间有一个竖线“|”分开,称为过滤条件)。限制条件“i#GT#1”是一个逻辑表达式,意思就是i1;“#GT#”是逻辑运算符号,意思是“大于(GreaterThan的字首字母缩写)”。约束的定义方式问题的求解:运行菜单命令“LINGO|Solve”全局最优解RP=(40,40,40,25),OP=(0,10,35,0)最小成本=78450注:由于输入中没有给出行名,所以行名是系统自动按照行号1-9生成的。选择菜单命令“LINGO|Generate|Displymodel(Ctrl+G)”,可以得到展开形式的模型(如图),可以看到完整的模型,也能确定行号(行号放在方括号“[]”中,且数字前面带有下划线“_”)。最好在输入模型时用户主动设定约束的行名(即约束名),使程序清晰些。单一约束的行名设置方法就是将行名放在方括号“[]”中,置于约束之前。后面将结合具体例子介绍在使用集合的情况下如何设置行名。小结:LINGO模型最基本的组成要素一般来说,LINGO中建立的优化模型可以由五个部分组成,或称为五“段”(SECTION):(1)集合段(SETS):以“SETS:”开始,“ENDSETS”结束,定义必要的集合变量(SET)及其元素(MEMBER,含义类似于数组的下标)和属性(ATTRIBUTE,含义类似于数组)。如上例中定义了集合quarters(含义是季节),它包含四个元素即四个季节指标(1,2,3,4),每个季节都有需求(DEM)、正常生产量(RP)、加班生产量(OP)、库存量(INV)等属性(相当于数组,数组下标由quarters元素决定)。一旦这样的定义建立起来,如果quarters的数量不是4而是1000,只需扩展其元素为1,2,...,1000,每个季节仍然都有DEM,RP,OP,INV这样的属性(这些量的具体数值如果是常量,则可在数据段输入;如果是未知数,则可在初始段输入初值)。当quarters的数量不是4而是1000时,没有必要把1,2,...,1000全部一个一个列出来,而是可以如下定义quarters集合:“quarters/1..1000/:DEM,RP,OP,INV;”,“1..1000”的意思就是从1到1000的所有整数。(2)目标与约束段:目标函数、约束条件等,没有段的开始和结束标记,因此实际上就是除其它四个段(都有明确的段标记)外的LINGO模型。这里一般要用到LINGO的内部函数,尤其是与集合相关的求和函数@SUM和循环函数@FOR等。上例中定义的目标函数与quarters的元素数目是4或1000并无具体的关系。约束的表示也类似。(

1 / 57
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功