应用数学前沿前景数学源自于古希腊语,是研究数量、结构、变化以及空间模型等概念的一门科学。透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学的基本要素是:逻辑和直观、分析和推理、共性和个性。数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的逻辑推理及对完美境界的追求。虽然不同的传统学派可以强调不同的侧面,然而正是这些互相对立的力量的相互作用,以及它们综合起来的努力,才构成了数学科学的生命力、可用性和它的崇高价值。今日,数学被使用在世界不同的领域上,包括科学、工程、医学和经济学等。数学对这些领域的应用通常被称为应用数学,有时亦会激起新的数学发现,并导致全新学科的发展。数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标。虽然许多以纯数学开始的研究,但之后往往会发现许多应用。现在关于数学应用的广泛性来谈谈:随着科学发展,学科之间的相互渗透已是一种普遍现象,而其中数学的渗透又特别明显。这种渗透不能简单地理解为把数学作为一种科学研究的工具和技术,而是新的研究领域和交叉学科建立的动力。数学已成为其他学科理论的一个重要组成部分,这是数学应用日益广泛的体现。这种体现具体讲就是数学化。现代科学发展的一个显著特点是,自然科学、技术科学以及社会科学都普遍地处于数学化的过程之中,它们都在朝着愈来愈精确的方向发展。电子计算机的发展和应用,为各门科学的数学化提供了可能性,因而加速了各门科学数学化的趋势。我们可以分成两个个方面来分析:●自然科学的数学化数学是研究现实世界的空间形式和数量关系的科学。它的理论深刻地反映和刻画了现实世界的空间形式和数量关系。随着社会进一步的发展,愈来愈需要对自然现象和客观物质作定量研究。“数”与“形”在现实世界中无处不在,客观世界的任何一种物质的几何形态都具有空间形式,其运动的路线是曲线,而曲线是由一些数量的某种关系来刻画。这就决定了数学及其方法可以运用于任何一门自然科学,数学是自然科学的基础。(1)以物理学为例:物理学应用数学的历史较长,18世纪是数学与经典力学相结合的黄金时期。19世纪数学应用的重点转移到电学与电磁学,并且由于剑桥学派的努力而形成了数学物理分支。20世纪以后,随着物理科学的发展,数学相继在应用于相对论、量子力学以及基本粒子等方面取得了一个又一个的突破,极大地丰富了数学物理的内容,同时,也反过来刺激了数学自身的进步。(2)以生物学为例与物理和天文等学科相比,生物学中应用相当迟缓.将数学方法引进生物学的研究大约始于20世纪初.英国统计学家皮尔逊(K.Pearson,1857-1936)首先将统计学应用于遗传学和进化论,并于1902年创办了《生物统计学》(Biometrika)杂志,统计方法在生物学中的应用变的日益广泛。(3)以医学为例20世纪60年代,数学方法在医学诊断技术中的应用提供了这方面的又一重要实例。就是CT扫描仪的发明。1963-1964年间,美籍南非理论物理学家科马克(A.M.Cormack)发表了计算人体不同组织对X射线吸收量的数学公式,解决了计算机断层扫描的理论问题。科马克的工作促使英国工程师亨斯菲尔德(G.N.Hounsfield)发明了第一台计算机X射线断层扫描仪即CT扫描仪。科马克和亨斯菲尔德共同荣获了1979年诺贝尔医学生理学奖。数学家冯•诺依曼说过:“在现代实验科学中,能否接受数学方法或与数学相近的物理学方法,已越来越成为该科学成功与否的重要标志”随着电子计算机的发展和应用,人们已经能处理越来越复杂的现象,比如,复杂程度远远超过物理现象、化学现象、生物现象。数学已成为自然科学的强有力的工具。现代科学技术发展的一个重要趋势之一,是各门科学的数学化。这种数学化已获得了丰硕的成果。●社会科学的数学化20世纪数学发展的另一个特点就是数学广泛应用于社会科学之中,即社会科学数学化的趋势增长。所谓社会科学数学化,就是指数学向社会科学的渗透,也就是运用数学方法来揭示社会现象的一般规律。由于社会现象的随机因素较多,情况较复杂,因此在数学化过程中所需的变量参数也较多,因此造成社会科学数学化的难度比较大,社会科学数学化的进程也就较晚。但是,随着各门科学和数学本身的进步,影响各种社会现象的因素将逐渐被数学所阐明,因此运用数学的可能性就愈来愈大。从整个科学发展趋势来看,社会科学的数学化也是必然的趋势,其主要原因可以归结为有下面四个方面:第一,社会管理需要精确化的定量依据,这是促使社会科学数学化的最根本的因素。第二,社会科学的各分支逐步走向成熟,社会科学理论体系的发展也需要精确化。第三,随着数学的进一步发展,它出现了一些适合研究社会历史现象的新的数学分支。如概率论、离散数学、模糊数学、数理逻辑、系统论、信息论、控制论、突变论等,都为社会科学数学化提供了有力的武器。这些新的数学分支使社会科学数学化成为可能。第四,电子计算机的发展与应用,使非常复杂社会现象经过量化后可以进行数值处理。数学称为学科之王,其他任何学科的发展都离不开数学,所以数学的发展显得尤为重要,而数学科研道路上的难题是我们必须要跨越的,要想解决这些难题首先得了解这些难题。现在来简单的归纳一下:第一个是哥德巴赫猜想:哥德巴赫(Goldbach)是德国一位数学家,生于1690年。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫写信给当时的大数学家欧拉(Euler),提出了以下的猜想:(a)任何一个=6之偶数,都可以表示成两个奇质数之和。(b)任何一个=9之奇数,都可以表示成三个奇质数之和。这就是著名的哥德巴赫猜想。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。从哥德巴赫提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如:6=3+3,8=3+5,10=5+5=3+7,12=5+7,14=7+7=3+11,16=5+11,18=5+13,....等等。有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但严格的数学证明尚待数学家的努力。从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。到了20世纪20年代,才有人开始向它靠近。1920年,挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比36大的偶数都可以表示为(9+9)。这种缩小包围圈的办法很管用,科学家们于是从(9+9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫猜想”。目前最佳的结果是中国数学家陈景润于1966年证明的,称为陈氏定理(Chen'sTheorem)。即“任何充分大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。”通常都简称这个结论为大偶数可表示为“1+2”的形式。最终会由谁攻克“1+1”这个难题呢?现在还无法预测,不过,王元最近有一个演讲,说英国数学家正在绕道探讨,但愿有希望。第二个是四色猜想:四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯·格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象,“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。1852年10月23日,他的弟弟就这个问题的证明请教他的老师、著名数学家德·摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密尔顿爵士请教。哈密尔顿接到摩尔根的信后,对四色问题进行论证。但直到1865年哈密尔顿逝世为止,问题也没有能够解决。1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。11年后,即1890年,数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题。不过先辈数学大师们的努力,为后世的数学家揭示四色猜想之谜铺平了道路。进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。1913年,伯克霍夫在肯普的基础上引进了一些新技巧,美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,有人从22国推进到35国。1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。看来这种推进仍然十分缓慢。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。四色猜想的计算机证明,轰动了世界。它不仅解决了一个历时100多年的难题,而且有可能成为数学史上一系列新思维的起点。不过也有不少数学家并不满足于计算机取得的成就,他们还在寻找一种简捷明快的书面证明方法。第三个是几何的三大问题:平面几何作图限制只能用直尺、圆规,而这里所谓的直尺是指没有刻度只能画直线的尺。用直尺与圆规当然可以做出许多种图形,但有些图形如正七边形、正九边形就做不出来。有些问题看起来好像很简单,但真正做出来却很困难,这些问题之中最有名的就是所谓的三大问题。几何三大问题是:1.化圆为方:求作一正方形使其面积等于一已知圆;2.三等分任意角;3.倍立方:求作一立方体使其体积是一已知立方体的二倍。圆与正方形都是常见的几何图形,但如何作一个正方形和已知圆等面积呢?若已知圆的半径为1则其面积为π,所以化圆为方的问题等于去求一正方形其面积为π,也就是用尺规做出长度为的线段(或者是π的线段)。三大问题的第二个是三等分一个角的问题。对于某些角如,三等分并不难,但是否所有角都可以三等分呢?例如,若能三等分则可以做出的角,那么正18边形及正九边形也都可以做出来了(注:圆内接一正十八边形每一边所对的圆周角为)。其实三等分角的问题是由求作正多边形这一类问题所引起来的。第三个问题是倍立方。埃拉托塞尼(公元前276年~公元前195年)曾经记述一个神话提到说有一个先知者得到神谕必须将立方形的祭坛的体积加倍,有人主张将每边长加倍,但我们都知道那是错误的,因为体积已经变成原来的8倍。这些问题困扰数学家一千多年都不得其解,而实际上这三大问题都不可能用直尺圆规经有限步骤可解决的。1637年笛卡儿创建解析几何以后,许多几何问题都可以转化为代数问题来研究。1837年旺策尔(Wantzel)给出三等分任一角及倍立方不可能用尺规作图的证明。1882年林得曼(Linderman)也证明了π的超越性(即π不为任何整数系数多次式的根),化圆为方的不可能性也得以确立。这些世界性数学难题亟待我们大家去解决,了解数学的前沿发展,更有利于规划我们未来的研究方向。