教育统计与测量复习资料名词解释1、统计:就是“统而计之”对所考察事物的量的取值在其出现的全部范围内作总体的把握,全局性的认识。教育统计:对教育领域各种现象量的取值从总体上的把握与认识,它是为教育工作的良好进行,科学管理、革新发展服务的。教育统计学:社会科学中的一门应用统计,是数理统计跟教育学、心理学交叉结合产物2、测量:按一定规则给对象在某种性质的量尺上指定值。教育测量:就是给所考察研究的教育现象,按一定的规则在某种性质量尺上指定值3、心理量表:心理测验工具与常模的结合4、数据:用数量或数字形式表示的资料事实称为数据。计数数据:是以计算个数或次数获得的,多表现为整数。测量评估数据:借助测量工具或评估方法对事物的某种属性指派给数字后所获数据。人工编码数据以人们按一定规则给不同类别的事物指派适当的数字号码后所形成的数据5、称名变量:只说明某一事物与其他事物在名称、类别或属性上的不同,并不说明事物与事物之间差异的大小、顺序的先后及质的优劣。顺序变量:是指可以就事物的某一属性的多少或大小按次序将各事物加以排列的变量,具有等级性和次序性的特点。等距变量:除能表明量的相对大小外,还具有相等的单位。比率变量:除了具有量的大小、相等单位外,还有绝对零点。比率变量数据可以进行加、减、乘、除运算6、次数分布:一批数据中各个不同数值所出现次数多少的情况,或者是这批数据在数轴上各个区间内所出现的次数多少的情况。简单次数分布表:通常简称为次数分布表,其实质是反映一批数据在各等距区组内的次数分布结构。相对次数:各组的次数f与总次数N之间的比值7、次数分布曲线:从理论上讲,如若总次数无限增大,则随着组距的缩小,这些折线所接近的极限便将成为极光滑而富有规则性的曲线,称为次数分布曲线8、散点图:用平面直角坐标系上点的散布图形来表示两种事物之间的相关性及联系模式。散点图适合于描述二元变量的观测数据。线形图:以起伏的折线来表示某种事物的发展变化及演变趋势的统计图,适用于描述某种事物在时间序列上的变化趋势,也适用于描述一种事物随另一事物发展变化的趋势模式,还可适用于比较不同的人物团体在同一心理或教育现象上的变化特征及相互联系9、观测数据不仅具有离散性的特点,而且还具有向某点集中的趋势,反映次数颁分布集中趋势的量数叫集中量数。中位数:位于数据分布正中间位置上的那个数。如果一组数据从小到大排列,则中位数通常是将这批数据个数一分为二,居于中间的那个数。众数:一个次数分布中出现次数最多的那个数,众数不唯一可有一个或多个。用符号Mo表示。离中趋势:数据具有偏离中心位置的趋势,它反映了一组数据本身的离散程度和变异性程度。差异量数:反映一组数据离散程度的量10、一批数据的算术平均数指的是这批数据总和数除以数据总次数后所得的商数。平均差:各数据与其平均数的离差绝对值的平均值。方差:数据的离差平方数的算术平均数。标准差:方差的算术平方根11、差异系数:差异量数和集中量数两相对比后所形成的相对差异量数。地位量数:凡反映次数分布中各数据所处地位的量就叫地位量数12、相关:行为变量或现象之间存在着种种不同模式、不同程度的联系。这种联系叫做相关。直线性相关:两个变量的成对观测数据在平面直角坐标系上描点构成的散点图会环绕在某一条直线附近分布13、原始分数:在测量工具上直接得到的测值(数字),叫原始分数。相对评分分数:通过被试间相互比较而确定意义的分数叫相对评分分数。绝对评分分数:通过拿被试测值跟应有标准作比较来确定其意义的分数叫绝对评分分数14、常模:测验常模简称常模即指一定人群在测验所测特性上的普遍水平或水平分布状况。组内常模:解释被试原始分数的参照体系,即被试所属那类群体的人,在所测特性上测验取值的分布状况。标准分数常模:用被试所得测验分数转换成的标准分数来揭示其在常模团体中的相对地位的组内常模15、线性变换:对所有要作变换的值,都乘以同一确定值然后再都加上另一确定值。测绘项目的难度:被试完成项目作答任务时所遇到的困难程度。项目的难度指数:定量刻画一个测验项目的被试作答困难程度的量数就叫项目的难度指数。得分率(通过率):最通用的项目难度指数的求法,就是计算被试在项目上的得分率或者说通过率。项目区分度:就是项目区别被试水平高低的能力的量度。测验信度:测验在测量它所测特质时得到的分数(测值)的一致性。它是对测验控制误差能力的量度,是反映测验性能的一个重要质量指标16、观察分数:如果从测验实施过程中实际得到的被试分数叫观察分数。真分数:被试在所测特质上客观具有的水平值。测量误差:观察分数与真分数的差就是测量误差。信度系数:利用同一测验向同一批被试重测两次所得的两批独立测值,求出其间的相关系数,就可利用这种重测相关系数作为测验信度的估计值。这样的相关系数就叫信度系数。稳定性系数:由于重侧法十分强调特质的稳定性,所以用这种方法求取的信度系数就叫做稳定性系数。等值性系数:用平行形式相关求得的信度系数,因为特别强调两测验形式的等值关系所以又叫等值性系数17、测量标准误:实际测验中所得测值偏离真分数的程度叫做测量标准误可记为SEM。测验效度:测验实际上测到它打算要测的东西的程度。内容效度:测验项目构成应测行为领域代表性样本的程度。效标关联效度:测验预测个体在类似或某种特定情境下行为表现的有效性。结构效度:测验测得心理学理论所定义的某一心理结构或特质的程度。效度系数:测验分数与效标测量值间的相关系数叫效度系数18、安置性测验:学期开始或单元教学开始时确定学生实有水平以便针对性地做好教学安排而经常使用的测验。形成性测验:在教学进行过程中实施的用于检查学生掌握知识和进步情况的测验,这可为师生双方提供有关学习成败的连续反馈信息。诊断性测验:为探测与确定学习困难原因而施测的一类测验。终结性测验:在课程结束或教学大周期结束时,用于确定教学目标达到程度和学生对预期学习结果掌握程度的一类测验,称为终结性测验19、常模参照测验:实是参照着常模使用相对位置来描述测验成绩水平的一种测验。标准参照测验:跟一组规定明确的知识能力标准或教学目标内容对比时,对学习者的测验成绩作出解释的一类测验。职业能力倾向测验:测量人的某种潜能,从而预测人在一定职业领域中成功可能性的心理测验20、能力倾向:一个人获得新的知识、能力和技能的内在潜力21、确定性现象:在相同的条件下其结果也一定相同的现象。不确定性现象:在相同的条件下其结果却不一定相同的现象,又称随机现象22、随机变量:我们称记录各种随机试验结果的变量为随机变量。概率:通俗地说,某事件发生的概率就是该事件发生的可能性大小记作为P(A)23、正态分布是连续性随机变量中常见的一种概率分布形态也称常态分布。总体:我们把客观世界中具有某种共同特征的元素的全体称为总体。样本:从总体中抽取的部分个体组成的群体称为样本。统计量:在总体数据基础上求取的各种特征量数我们称其为参数,应用样本数据计算的各种特征量数我们称其为统计量。抽样分布:从一个总体中随机抽取若干个等容量的样本,计算每个样本的某个特征量数,由这些特征量数形成的分布,称为这个特征量数的抽样分布24、小概率事件:在教育统计中常常把概率取值小于0.05或小于0.01的随机事件称为小概率事件。小概率事件原理:认为小概率事件在一次抽样中不可能发生的原理25、统计假设检验的显著性水平:在统计假设检验中,公认的小概率事件的概率值被称为统计假设检验的显著性水平。记为α。虚无假设又称为原假设、零假设,以符号H0表示。虚无假设在假设检验中将被视作为已知条件而应用,因此虚无假设应是一个相对比较明确的陈述命题,一定要含有“等于什么”的成分。备择假设又称解消假设,研究假设等,以符号H1表示。备择假设作为虚无假设的对立假设而存在,因此它也是一个陈述命题,备择假设是对虚无假设的否定26方差分析:统计学中一种独特的假设检验方法,它的最基本功能就是一次性检验多个总体平均数的差异显著性单选、填空、多选1、教育统计学的内容主要包括:描述统计与推断统计2、测量结果能在其上取定数值的量尺,从量化水平高低的角度可分为:名义量尺、顺序量尺、等距量尺与比率量尺。在名义量尺上所指定的数字,只具有类别标志的意义,而无性质优劣,分量多寡的意义。顺序量尺上的数字量化水平则较高,有优劣、大小、先后之别,如学业成绩评定优劣。等距量尺上的数字量化水平又更高,这种数字是单位相等但零点可任意指定的线性连续体系上的值,如温度、可比可加。比率量尺是一种有绝对零点的,等单位的线性连续体系。如身高、体重等。能加、减、乘、除3、测量工作按一定的规则进行,体现为三种东西即:测量工具、施测和评分的程序与要求、结果解释参照系或参照物4、心理测量跟物理测量的两点突出差异:一间接性;二要抽样进行5、数据的种类①从数据来源分成计数数据、测量评估数据和人工编码数据②根据数据所反映的变量的性质分分为称名变量数据、顺序变量数据、等距变量和比率变量数据6、顺序变量数据之间虽有次序与等级关系,但不具有相等单位,也不具有绝对的数量大小和零点。因此只能进行顺序递推运算,不能做加减乘除运算。等距变量不能用乘、除法运算来反映两个数据之间的倍比关系,能做加减运算。比率变量数据可以进行加、减、乘、除运算7、数据三个特点①数据的离散性②数据的变异性③数据的规律性8、统计一批数据的次数分布两种方法:一、按不同的测量值逐点统计次数;二、为了简缩数据以区间跨度来统计次数。如分数段统计9、编制简单次数分布步骤①求全距②定组数③定组距④写组限⑤求组中值⑥归类划记⑦登记次数10、相对次数分布表主要能反映各组数据的百分比结构11、累积次数分布表还分成“以下”累积次数分布表与“以上”累积次数分布表两种。“以下”累积其目的在于反映位于某个分数“以下”的累积次数共有多少12、次数分布图两种表达方式:次数直方图和次数多边图13、次数分布曲线按形状有各种不同类型①单峰对称分布曲线。正态分布曲线也是这一类型曲线中的一种②非对称曲线即偏态分布。正偏态:次数分布有朝数量大的一边偏尾,曲线高峰偏向数量小的方向,在一些考试中,若题目偏难,多数考分偏低时,可形成正偏态分布。而负偏态的次数分布偏向正好与正偏态相反14、几种常用统计分析图:散点图、线形图、条形图和圆形图15、圆形图有其独特的功能,特别适用于描述具有百分比结构的分类数据16、集中量数有三个作用①向人们提供整个分布中多数数据的集结点位置②集中反映一批数据在整体上的数量大小③一批数据的典型代表值17、集中量数有多个种类,最常用的是算术平均数、中位数和众数三种。其中算术平均数是使用最普通的一个集中量数。中数在下列情况中有较好的应用价值①数据分布中有个别异常值或极端值出现时,用平均数作分布的代表值倒不如用中数作分布的代表值来得客观合理②在次数分布的某端或两端的数据只有次数而没有确切数量时③在一些态度测验、价值观测验或一般的民意问卷测试中,通常向被调查对象提出一些事项,要求被调查对象对这些事项排序。那么,在这种资料的信息数据整理分析中可应用中数来概括各个事项的总体排序结果18、常用的差异量数是平均差、标准差和方差等指标19、差异系数又称为变异系数和变差系数,用符号CV表示。差异系数是一种反映相对离散程度的系数,即相对差异量数。它消去了单位,因而适合于不同性质数据的研究与比较。数据在次数分布中所处的地位可用百分等级来表示。百分等级也称百分位。用记号PR表示。百分等级反映的是某个观测分数以下数据个数占总个数的比例的百分数,在0到100之间取值。如百分等级PR=75,与其对应的这个百分位数,读作第75百分位数,记作P7520、相关:统计学上用相关系数来定量描述两个变量之间的直线性相关的强度与方向。如相互关联着的两变量,一个增大另一个也随之增大,一个减小另一个也随之减小,变化方向一致是正相关。如相互关联着的两变量,一个增大另一个反而减小,变化方向相反是负相关。相关系数用r表示,r在-1和+1之间取值。相关系数r的绝对值大小,表示两个变量之间的相关强度;相关系数r的正负号,表示相关的方向,分别为正相关和负相关;相关系数r=0,称