数值分析期末试题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1数值分析期末试题一、填空题(20102分)(1)设283012251A,则A______13_______。(2)对于方程组34101522121xxxx,Jacobi迭代法的迭代矩阵是JB05.25.20。(3)3*x的相对误差约是*x的相对误差的31倍。(4)求方程)(xfx根的牛顿迭代公式是)('1)(1nnnnnxfxfxxx。(5)设1)(3xxxf,则差商]3,2,1,0[f1。(6)设nn矩阵G的特征值是n,,,21,则矩阵G的谱半径)(Gini1max。(7)已知1021A,则条件数)(ACond9(8)为了提高数值计算精度,当正数x充分大时,应将)1ln(2xx改写为)1ln(2xx。(9)n个求积节点的插值型求积公式的代数精确度至少为1n次。(10)拟合三点))(,(11xfx,))(,(22xfx,))(,(33xfx的水平直线是)(3131iixfy。二、(10分)证明:方程组12112321321321xxxxxxxxx使用Jacobi迭代法求解不收敛性。证明:Jacobi迭代法的迭代矩阵为05.05.01015.05.00JBJB的特征多项式为2)25.1(5.05.0115.05.0)det(2jBIJB的特征值为01,i25.12,i25.13,故25.1)(JB>1,因而迭代法不收敛性。三、(10分)定义内积10)()(),(dxxgxfgf试在xSpanH,11中寻求对于xxf)(的最佳平方逼近元素)(xp。解:1)(0x,xx)(1,1),(1000dx,21),(1001xdx,31),(10211dxx,32),(100dxxf,52),(101dxxxf。法方程5232312121110cc解得1540c,15121c。所求的最佳平方逼近元素为xxp1512154)(,10x四、(10分)给定数据表x-2-1012y-0.10.10.40.91.6试用三次多项式以最小二乘法拟合所给数据。解:332210)(xcxcxccxy84211111000111118421A,130034003401034010001005AAT3TTyA)4.14,7,2.4,9.2(法方程yAAcATT的解为4086.00c,39167.01c,0857.02c,00833.03c得到三次多项式3200833.00857.039167.04086.0)(xxxxy误差平方和为000194.03五.(10分)依据如下函数值表x0124)(xf19233建立不超过三次的Lagrange插值多项式,用它计算)2.2(f,并在假设1)()4(xf下,估计计算误差。解:先计算插值基函数1478781)40)(20)(10()4)(2)(1()(230xxxxxxxlxxxxxxxl38231)41)(21)(01()4)(2)(0()(231xxxxxxxl2324541)42)(12)(02()4)(1)(0()(xxxxxxxl12181241)24)(14)(04()2)(1)(0()(233所求Lagrange插值多项式为121445411)(3)(23)(9)()()()(233210303xxxxlxlxlxlxlxfxLiii从而0683.25)2.2()2.2(3Lf。据误差公式))()()((!4)()(3210)4(3xxxxxxxxfxR及假设1)()4(xf得误差估计:40396.09504.0!41)42.2)(22.2)(12.2)(02.2(!4)()()4(3fxR六.(10分)用矩阵的直接三角分解法解方程组7173530103421101002014321xxxx解设443433242322434241323121020111113010342110100201uuuuuullllll由矩阵乘法可求出iju和ijl10101211011111434241323121llllll21210102010201443433242322uuuuuu解下三角方程组7173510101211014321yyyy有51y,32y,63y,44y。再解上三角方程组463521210102014321xxxx得原方程组的解为11x,12x,23x,24x。七.(10分)试用Simpson公式计算积分5dxex211的近似值,并估计截断误差。解:0263.2)4(612215.11211eeedxexxexxxxf15678)4()2436121(43.198)1()(max)4()4(21fxfx截断误差为06890.0)(max2880)12()4(2152xfRx八.(10分)用Newton法求方程2lnxx在区间),2(内的根,要求8110kkkxxx。解:此方程在区间),2(内只有一个根s,而且在区间(2,4)内。设2ln)(xxxf则xxf11)(',21)(''xxfNewton法迭代公式为1)ln1(112ln1kkkkkkkkxxxxxxxx,,2,1,0k取30x,得146193221.34xs。九.(10分)给定数表x-1012)(xf10141615)('xf10.1求次数不高于5的多项式)(5xH,使其满足条件62,0),()(3,2,1,0),()('55ixfxHixfxHiiii其中,1ixi3,2,1,0i。解:先建立满足条件)()(3ixfxp,3,2,1,0i的三次插值多项式)(3xp。采用Newton插值多项式))((,,)(,)()(1021001003xxxxxxxfxxxxfxfxp+))()((,,,2103210xxxxxxxxxxf)1()1(61)1()1(410xxxxxx326161914xxx再设)2)(1()1)(()()(35xxxxbaxxpxH,由1.0)2)(()1()1(1)6)(()1()1('3'5'3'5bapHbapH得6017811baba解得36059a,360161b。故所求的插值多项式)2)(1()59161(36016161914)(2325xxxxxxxxH

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功