数字信号处理基于MATLAB的离散傅里叶变换的仿真

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1数字信号处理设计报告书课题名称应用MATLAB对信号进行频谱分析及滤波姓名何晨学号20076089院、系、部电气系专业电子信息工程指导教师刘鑫淼※※※※※※※※※※※※※※※※※※※※※※※※2007级数字信号处理课程设计22010年6月27日一、设计任务及要求:1、用Matlab产生正弦波,矩形波,并显示各自的时域波形图;2、进行FFT变换,显示各自频谱图,其中采样率、频率、数据长度自选,要求注明;3、绘制三种信号的均方根图谱;4、用IFFT回复信号,并显示恢复的正弦信号时域波形图。指导教师签名:2010年月日二、指导教师评语:指导教师签名:2010年月日三、成绩指导教师签名:2010年月日3应用MATLAB对信号进行频谱分析及滤波20076089何晨一、设计目的要求学生会用MATLAB语言进行编程,绘出所求波形,并且运用FFT求对连续信号进行分析。二、设计要求1、用Matlab产生正弦波,矩形波,并显示各自的时域波形图;2、进行FFT变换,显示各自频谱图,其中采样率、频率、数据长度自选,要求注明;3、绘制三种信号的均方根图谱;4、用IFFT回复信号,并显示恢复的正弦信号时域波形图。三、系统原理用FFT对信号作频谱分析是学习数字信号处理的重要内容。经常需要进行频谱分析的信号是模拟信号和时域离散信号。频谱分辨率直接和FFT的变换区间N有关,因为FFT能够实现频率分辨率是2π/N。x(n)是一个长度为M的有限长序列,则x(n)的N点离散傅立叶变换为:X(k)=DFT[x(n)]=knNWNnnx10)(,k=0,1,...,N-1NjeNW2逆变换:x(n)=IDFT[X(k)]=knNWkXNnN10)(1,k=0,1,...,N-1但FFT是一种比DFT更加快速的一种算法,提高了DFT的运算速率,为数字信号处理技术应用于各种信号处理创造了条件,大大提高了数字信号处理技术的发展。本实验就是采用FFT,IFFT对信号进行谱分析。4四、程序设计fs=input('pleaseinputthefs:');%设定采样频率N=input('pleaseinputtheN:');%设定数据长度t=0:0.001:1;f=100;%设定正弦信号频率%生成正弦信号x=sin(2*pi*f*t);figure(1);subplot(211);plot(t,x);%作正弦信号的时域波形axis([0,0.1,-1,1]);title('正弦信号时域波形');z=square(50*t);subplot(212)plot(t,z)axis([0,1,-2,2]);title('方波信号时域波形');grid;%进行FFT变换并做频谱图y=fft(x,N);%进行fft变换mag=abs(y);%求幅值f=(0:N-1)*fs/N;%横坐标频率的表达式为f=(0:M-1)*Fs/M;figure(2);subplot(211);plot(f,mag);%做频谱图axis([0,1000,0,200]);title('正弦信号幅频谱图');y1=fft(z,N);%进行fft变换mag=abs(y1);%求幅值f=(0:N-1)*fs/N;%横坐标频率的表达式为f=(0:M-1)*Fs/M;subplot(212);plot(f,mag);%做频谱图axis([0,1000,0,200]);title('方波信号幅频谱图');grid;%求功率谱sq=abs(y);power=sq.^2;figure(3)5subplot(211);plot(f,power);title('正弦信号功率谱');grid;sq1=abs(y1);power1=sq1.^2;subplot(212);plot(f,power1);title('方波信号功率谱');grid;%用IFFT恢复原始信号xifft=ifft(y);magx=real(xifft);ti=[0:length(xifft)-1]/fs;figure(4);subplot(211);plot(ti,magx);axis([0,0.1,-1,1]);title('通过IFFT转换的正弦信号波形');zifft=ifft(y1);magz=real(zifft);ti1=[0:length(zifft)-1]/fs;subplot(212);plot(ti1,magz);title('通过IFFT转换的方波信号波形');grid;五、仿真结果及分析由图可以看出正弦波周期T=0.01,采样点N=1024.程序为:x=sin(2*pi*f*t);6figure(1);subplot(211);plot(t,x);%作正弦信号的时域波形axis([0,0.1,-1,1]);title('正弦信号时域波形');z=square(50*t);subplot(212)plot(t,z)axis([0,1,-2,2]);title('方波信号时域波形');grid;2、对正弦波、方波信号进行FFT变换程序:y=fft(x,N);%进行fft变换mag=abs(y);%求幅值f=(0:N-1)*fs/N;%横坐标频率的表达式为f=(0:M-1)*Fs/M;figure(2);subplot(211);plot(f,mag);%做频谱图axis([0,1000,0,200]);title('正弦信号幅频谱图');y1=fft(z,N);%进行fft变换mag=abs(y1);%求幅值f=(0:N-1)*fs/N;%横坐标频率的表达式为f=(0:M-1)*Fs/M;subplot(212);plot(f,mag);%做频谱图axis([0,1000,0,200]);title('方波信号幅频谱图');grid;7正弦信号、方波信号功率谱程序:sq=abs(y);power=sq.^2;figure(3)subplot(211);plot(f,power);title('正弦信号功率谱');grid;sq1=abs(y1);power1=sq1.^2;subplot(212);plot(f,power1);title('方波信号功率谱');grid;8对两个信号进行恢复程序:xifft=ifft(y);magx=real(xifft);ti=[0:length(xifft)-1]/fs;figure(4);subplot(211);plot(ti,magx);axis([0,0.1,-1,1]);title('通过IFFT转换的正弦信号波形');zifft=ifft(y1);magz=real(zifft);ti1=[0:length(zifft)-1]/fs;subplot(212);plot(ti1,magz);title('通过IFFT转换的方波信号波形');grid;当采样频率小于2fc或N小于M时恢复信号就会出现失真,频谱会发生馄叠。六、设计总结:通过对本次应用MATLAB语言对信号进行频谱分析及滤波设计,使更加系统的理解了FFT,IFFT功能,对采样频谱分析及恢复功能掌握有了进一步提高,如果序列x(n)主值序列长度为M,最高频率为fc只有当频率采样点N≥M,采样频率fs≥2fc时,才有x(n)=IDFT[X(k)]=x(n)可有频域采样X(k)恢复原序列x(n),否则产生时域混叠失真现象。本次设计对我的启发很大也更见锻炼了我们面对困难的心态,对今后的学习工作大有裨益。七、参考文献:1丁玉美,高西全.数字信号处理.2版.西安:西安电子科技大学出版社,20012[美]M.H.海因斯著张建华等译.数字信号处理.北京:科学出版社,20023张葛祥,李娜.MATLAB仿真技术与应用.北京:清华大学出版社,20034楼顺天,李博菡.基于MATLAB的系统分析与设计.西安:西安电子科技大学出版社,19985.王宏..MATLAB6.5及其在信号处理中的应用.北京清华大学出版社,2004

1 / 8
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功