数学分析专题研究试题模拟试题及参考答案1一、填空题(每小题3分,共18分)1.集合X中的关系R同时为反身的,对称的,传递的,则该关系R为.2.设E是非空数集,若存在实数β,满足1)Ex,有x;2),则称β是数集E的下确界.3.函数)(xfy在点0x的某个邻域内有定义,若存在,则称函数)(xf在点0x可导。4.若)(xfy是对数函数,则)(xf满足函数方程)(xyf。5.若非零连续函数)(xf满足方程)()()(yfxfyxf,则函数)(xf是函数。6.设函数)(xf定义在区间),(ba上,对于任意的),(,21baxx,)1,0(,有成立,则称)(xf在),(ba上为下凸函数。二.单项选择题(每题3分)1.设f:YX,XA,则A()))((1Aff.A.=;B.≠;C.;D.2.已知函数)(xfy在区间),(ba上可导,),(bax,有1)(0xf,则()。A.)(xf有界B.)(xf无界C.)(xf可积D.)(xf不可积3.已知函数)(xf与)(x在[a,b]上可导,且)(xf)(x,则()。A.)(xf≠)(xB.)(xf)(xC)(xf)(xD.前三个结论都不对4.已知]2,1(2]1,0[1)(tttf,对于]2,0[x,定义xttfxF0d)()(,则)(xF在区间[0,2]上()。A.连续B.不连续C.可导D.前三个结论都不对5.已知)(xf是区间],[ba上的严格下凸函数,则()A.0)(xfB.最小值唯一C.0)(xfD.最大值唯一6.xxxfsin)(定义在(0,1)上,则)(xf在(0,1)上是()函数.A.有界B.无界C.周期D.偶三、计算题(每小题8分,共32分)1.已知2costan)(xxf,求)(xf2.求定积分20dcosxxx3.已知34)1(2xxxf,求)(xf。4.求30sinlimxxxx四、证明题(每题8分)1.设数列{na}满足na0且1limrannn,则级数1nna收敛数学分析专题研究试题模拟试题及参考答案22.已知函数)(xf在],[ba上连续,在),(ba内存在二阶导数,且0)()(bfaf,存在0)(),,(cfbac。则至少存在一点),(ba,使0)(f。3.已知2,0,0yxyx,证明2sinsinyx4.已知函数在],[ba上连续非负,且存在一点),(0bax,使0)(0xf,则baxxf0d)(。参考答案:一.1.等价关系2.Ex0,0,使得0x3.xxfxxfx)()(lim0004.)()()(yfxfxyf5.线性6.)()1()())1((2121xfxfxxf二.1.D,2.C,3.D,4.A,5.B,6.A三.1.解:xxxxf2sin)(coscos1)(222202020202012cos2dsin2dsinsindcos.2xxxxxxxxxx解3.解34)1(2xxxf8)1(6)1(2xx故86)(2xxxf4.解20303cos1limsinlimxxxxxxx=xxxxxxx2sinlim31coslim3102061sinlim610xxx.四.证明题1.证明:因1limrannn,故存在N,当Nn时,1210rrann2.即Nn时,有nnra0,因为级数10Nnnr收敛.故有111NnnNnnnnaaa.因1Nnna收敛,故1nna收敛2.证明:已知f(x)在(a,b)内存在二阶导数,故f′(x)在(a,b)内连续,由拉格朗日定理,存在),(1ca,使得0)()()(1cacfaff存在),(2bc,使得0)()()(2cbcfbff故存在),(21,使得0)()()(1212fff3.证明:已知xxfsin)(在]2,0[上是上凸函数(2分),故对于)1,0(21),2,0(,yx有)sin(sin212sinyxyx故24sin22sin2sinsinyxyx4.证明:已知f(x)在[a,b]上连续且存在),(0bax使0)(0xf,故存在0,使得),(),(00baxx且当),(00xxx时,)(21)(0xfxf(4分),因f(x)非负,故bxxxxabadxxfdxxfdxxfdxxf0000)()()()(0)(2)(21)(0000xfxfdxxfxx