数学第九章四边形性质探索复习教案(鲁教版七年级下)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第九章《四边形性质探索》复习指导四边形以及由它衍生出来的平行四边形、矩形、菱形、正方形与梯形共同组成了一个和睦完美的“幸福家庭”.同学们通过图形的变换与探索,对这一“家庭成员”以及相互关系进行了了解和确认,并能利用各“成员”的特征与性质解决简单的问题.现在让我们再次走进这个“幸福之家”,去挖掘你所需要的“宝藏”.一、课标要求1、进一步通过运用图形的变换,探索图形特征与性质的过程,体验数学发现的过程,并得出正确的结论.2、对平行四边形的原有认识基础上,探索并掌握平行四边形的特征与性质,学会一些简单的识别方法.3、探索并掌握几种特殊平行四边形的概念和各自所具有的特殊性质,并学会识别这些特殊的图形.4、进一步了解平行四边形、矩形、菱形、正方形及梯形之间的相互关系.5、在观察、操作、推理、归纳等探索过程中,发展合情推理能力,进一步培养自己的说理习惯与能力.二、重点、难点与考点透视本章的重点是:平行四边形、矩形、菱形、正方形和梯形的概念、性质与判定;掌握其概念、特征与判定,并能应用这些知识是学好本章的关键.难点是:平行四边形与各种特殊的平行四边形之间的联系与区别.中考热点:本章内容是中考重点之一,如特殊四边形(平行四边形、矩形、菱形、正方形、等腰梯形)的性质和判定,以及运用这些知识解决实际问题.中考中常以选择题、填空题、解答题和证明题等形式呈现,近年的中考中又出现了开放题、应用题、阅读理解题、学科间综合题、动点问题、折叠问题等,这都成了热点题型,应引起同学们高度关注.三、知识总结与梳理(一)四边形的“全家福”(二)知识要点1、平行四边形(1)平行四边形的定义:两组对边分别平行的四边形是平行四边形.(2)平行四边形的性质平行四边形的邻角互补,对角相等;平行四边形的对边平行且相等;平行四边形的对角线互相平分;平行四边形是中心对称图形,对角线的交点为对称中心;若一条直线过平行四边形两对角线的交点,则这直线被一组对边截下的线段以对角线的交点为中点,且这条直线二等分平行四边形的面积;两平行线间的距离处处相等.(3)平行四边形的判定方法定义:两组对边分别平行的四边形是平行四边形;判定方法1:两组对角分别相等的四边形是平行四边形;判定方法2:两组对边分别相等的四边形是平行四边形;判定方法3:对角线互相平分的四边形是平行四边形;判定方法4:一组对边平行且相等的四边形是平行四边形.2、矩形(1)矩形的定义有一个内角是直角的平行四边形是矩形.(2)矩形的性质具有平行四边形的一切性质;矩形的四个角都是直角;矩形的对角线相等;矩形是轴对称图形;又是中心对称图形,还是旋转对称图形;(3)、矩形的判定方法定义:有一个角是直角的平行四边形是矩形;判定方法1:有三个角是直角的四边形是矩形;判定方法2:对角线相等的平行四边形是矩形.3、菱形(1)菱形的定义有一组邻边相等的平行四边形叫做菱形.(2)菱形的性质具有平行四边形的一切特征;菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形.(3)菱形的判定方法定义:有一组邻边相等的平行四边形叫做菱形;判定方法1:四条边都相等的四边形是菱形;判定方法2:对角线互相垂直的平行四边形是菱形.4、正方形(1)正方形定义有一组邻边相等并且有一个角的平行四边形叫做正方形;正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形;既是矩形又是菱形的四边形是正方形.[来源:学科网](2)正方形的性质正方形具有四边形、平行四边形、矩形、菱形的一切特征.边——四边相等、邻边垂直、对边平行;角——四角都是直角;对角线——①相等,②互相垂直平分,③每条对角线平分一组对角;是轴对称图形,有4条对称轴.(3)正方形的判定方法:[来源:学,科,网Z,X,X,K]①根据定义;②一组邻边相等的矩形是正方形;③一个角是直角的菱形是正方形.5、梯形(1)梯形的定义;(2)梯形的性质及其判定;梯形是特殊的四边形所具有四边形所具有的一切性质,此外它的上下两底平行.一组对边平行且另一组对边不平行的四边形是梯形,但要判断另一组对边不平行比较困难,一般用一组对边平行且不相等的四边形是梯形来判断.(3)等腰梯形的性质和判定:①性质:等腰梯形在同一底边上的两个内角相等,两腰相等,两底平行,两对角线相等,是轴对称图形,只有一条对称轴(底的中垂线就是它的对称轴).②判定方法:两腰相等的梯形是等腰梯形;同一底边上的两个角相等的梯形是等腰梯形;对角线相等的梯形是等腰梯形.(4)直角梯形有一个角是直角的梯形叫做直角梯形.(5)解决梯形问题的常用方法(如下图所示):①“作高”:使两腰在两个直角三角形中.②“移对角线”:使两条对角线在同一个三角形中.③“廷腰”:构造具有公共角的两个三角形.④“等积变形”:连接梯形上底一端点和另一腰中点,并延长交下底的延长线于一点,构成三角形.综上,解决梯形问题的基本思路:梯形问题分割、拼接转化三角形或平行四边形问题,这种思路常通过平移或旋转来实现.6、多边形的内外角和与外角和n边形内角和等于(n-2)·180°;任意多边形的外角和都等于360°.7、平面图形的密铺对于正多边形来说,只有正三角形、正方形和正六边形可以密铺.一般三角形、一般四边形有的也可以密铺.8、中心对称图形如果一个图形绕着它的中心点旋转180°后能与原图形重合,那么这个图形叫做中心对称图形,这个中心点叫做对称中心,图形上对称点的连线被对称中心平分;中心对称图形是旋转角度为180°的旋转对称图形.四、主要思想方法小结1、转化思想(又叫化归思想)转化思想就是将复杂的问题转化为简单的问题,或将陌生的问题转化为熟悉的问题来处理的一种思想,本章应用化归思想的内容主要有两个方面:(1)四边形问题转化为三角形问题来处理.(2)梯形问题转化为三角形和平行四边形来处理.2、代数法(计算法)代数法是用代数知识来解决几何问题的方法,也就是说运用几何定理、法则,通过列方程、方程组或不等式及解方程、方程组、恒等变形等代数方法,把几何问题转化成代数问题来解决的方法.3、变换思想即运用平移变换、旋转变换、对称变换等方法来构造图形解决几何问题.五、应注意的几个问题1、不能把判定方法与性质混淆,应加深对判定方法中条件的理解,重视判定方法中的基本图形,不要用性质代替了判别.解题时不能想当然,更不要忽视重要步骤.2、在判别一个四边形是正方形时,容易忽视某个条件,致使判断失误,要避免这种错误的产生就必须认真熟记正方形的定义、特征和识别方法,认真区别各个特征、识别方法的条件,不要忽略隐含条件,避免错误的产生.3、判别一个四边形是等腰梯形时,不要忽略了先判别四边形是梯形,对梯形的概念、性质、判定认识要清.4、纵横对比,分清各种四边形的从属关系,抓住其概念的内涵.5、复习时,依然从边、角、对角线、对称性等角度来理解和应用平行四边形、矩形、菱形、正方形的性质和判定方法,注意对问题的观察、分析与总结.六、典型例题解析例1如图,已知平行四边形ABCD,AE平分∠DAB交DC于E,BF平分∠ABC交DC于F,DC=6cm,AD=2cm,求DE、EF、FC的长.解析:因为四边形ABCD是平行四边形,所以AB//CD,AD=BC(平行四边形的对边平行且相等),所以∠1=∠2(两直线平行,内错角相等),又因为AE平分∠DAB,所以∠1=∠3,所以∠2=∠3,所以DA=DE=2cm(等角对等边).同理BC=CF=2cm.所以EF=DC—DE—CF=6cm—2cm—2cm=2cm.点评:如果已知图形是平行四边形,首先根据平行四边形的定义得出四边形的对边平行,再由平行四边形的特征——对边平行且相等,得出角之间的相等关系;若有角平分线,就可构造等腰三角形,由此沟通边与角之间的相等关系,这种方法在以后的解题中经常用到,请同学门注意.例2如图,等腰梯形ABCD中,AD∥BC,AD=5,AB=7,BC=12,求∠B的度数.解析:过点A作AE∥DC交BC于E,∵AD∥BC,∴四边形AECD为平行四边形.∴AD=EC,AE=CD.∵AB=CD=7,AD=5,BC=12,∴BE=BC-CE=12-5=7,AE=CD=AB=7.∴△ABE为等边三角形.故∠B=60°.点评:在梯形中,若已知有关腰的条件,一般平移一腰,产生三角形和平行四边形,使分散的条件集中起来,为解决问题创造条件,这是梯形中作辅助线的常用方法.[来源:学&科&网Z&X&X&K]例3如右图,在矩形ABCD中,AB=20cm,BC=4cm,点P从A开始沿折线A—B—C—D以4cm/s的速度运动,点Q从C开始沿CD边1cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达点D时,另一点也随之停止运动,设运动时间为t(s),t为何值时,四边形APQD也为矩形?解析:观察图形,当PA=DQ时,由AP//DQ,∠A=90°,可得四边形APQD是矩形.依题意有4t=20—t,所以t=4(s).即当t为4s时,四边形APQD是矩形.点评:要学会用代数法解几何问题.例4已知梯形ABCD,如图所示,其中AB∥CD,现要求添加一个条件.例如AD=BC,使梯形ABCD是等腰梯形,那么除了AD=BC外,还可添加一个什么条件,能使梯形ABCD是等腰梯形?甲、乙、丙、丁四名同学分别添加了一个条件.甲:∠A=∠B;乙:∠B+∠D=180°;丙∠A=∠D;丁:梯形是轴对称图形.[来源:Zxxk.Com]你认为哪些同学的条件符合要求?理由是.你能另外添加一个其他的条件,使梯形ABCD是等腰梯形吗?解析:甲、乙、丁三位同学的条件均符合要求.理由:甲从同一底上的两个角进行限定;乙则从对角及邻角之间的关系进行限定,由于AB∥CD,故∠B+∠C=180°,从而可由∠B+∠D=180°,得∠C=∠D;丁则从对称性进行限定,这些条件都能使梯形ABCD成为等腰梯形.对于丙的限定,由于∠A+∠D=180°,故∠A=∠D=90°,从而梯形ABCD是直角梯形.可另外添加∠C=∠D.点评:本题的关键是把握等腰梯形的判定方法,可先假设ABCD是等腰梯形,然后分析其中有哪些结论,从中选一个添加条件,即可使ABCD成为等腰梯形.例5如图,已知以△ABC的三边为边在BC的同侧作等边△ABD、△BCE、△ACF,请回答下列问题:(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是菱形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?解析:(1)四边形ADEF是平行四边形;(2)若四边形ADEF为菱形,AD=AF,所以AB=AC.所以当△ABC满足AB=AC时,四边形ADEF是菱形;(3)由(1)得∠BAC=∠BDE=60°+∠ADE,当∠ADE=0°时,以A、D、E、F为顶点的四边形不存时,此时,∠BAC=60°.所以当∠BAC=60°时,以A、D、E、F为顶点的四边形不存在.点评:解探索性问题,一般借助直观、直觉或经验先猜测结论,再结合条件加以说明,要注意抓住图形的特殊性,要得到特殊条件,就要构造特殊图形.例6如图(1),正方形ABCD和正方形CEFG有一公共顶点C,且B、C、E在一直线上,连接BG、DE.(1)请你猜测BG、DE的位置关系和数量关系?并说明理由.(2)若正方形CEFG绕C点向顺时针方向旋转一个角度后,如图(2),BG和DE是否还存在上述关系?若存在,试说明理由;若不存在,也请你给出理由.解析:BG=DE,BG⊥DE;理由是:延长BG交DE于点H,由题知,把△DCG绕点C顺时针旋转90°,与△DCE重合,所以BG=DE,∠GBC=∠CDE.由于∠CDE+∠CED=90°,所以∠GBC+∠DEC=90°,得∠BHE=90°.[来源:学科网ZXXK](2)上述结论也存在.理由:设BG交DE于H,BG交DC于K,把△BCG绕点C顺时针旋转90°,使之与△DCE重合,得BG=ED,∠KBC=∠KDH.又因为∠KBC+∠BKC=90°,可得∠DKH+∠KDH=90°,从而得∠KHD=90°.点评:综合利用正方形和旋转的性质是解决本题的关键.例7

1 / 8
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功