数据结构课程设计报告范例1

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1页共16页课程设计报告课程名称:数据结构课题名称:迷宫问题姓名:吴明华学号:200816020239院系:计算机学院通信与信息工程系专业班级:通信112指导教师:周坚和完成日期:2012年12月15日第2页共16页目录第1部分课程设计报告…………………………………………………………3第1章课程设计目的…………………………………………………3第2章课程设计内容和要求…………………………………………42.1问题描述………………………………………………42.2设计要求………………………………………………4第3章课程设计总体方案及分析……………………………………43.1问题分析………………………………………………43.2概要设计………………………………………………73.3详细设计………………………………………………73.4调试分析………………………………………………103.5测试结果………………………………………………103.6参考文献………………………………………………12第2部分课程设计总结…………………………………………………………13附录(源代码)……………………………………………………………………14第3页共16页第1部分课程设计报告第1章课程设计目的仅仅认识到队列是一种特殊的线性表是远远不够的,本次实习的目的在于使学生深入了解队列的特征,以便在实际问题背景下灵活运用它,同时还将巩固这种数据结构的构造方………………………………………………………………………………………………………………………………………………………………………………………..(省略)第4页共16页第2章课程设计内容和要求2.1问题描述:迷宫问题是取自心理学的一个古典实验。在该实验中,把一只老鼠从一个无顶大盒子的门放入,在盒子中设置了许多墙,对行进方向形成了多处阻挡。盒子仅有一个出口,在出口处放置一块奶酪,吸引老鼠在迷宫中寻找道路以到达出口。对同一只老鼠重复进行上述实验,一直到老鼠从入口走到出口,而不走错一步。老鼠经过多次试验最终学会走通迷宫的路线。设计一个计算机程序对任意设定的矩形迷宫如下图A所示,求出一条从入口到出口的通路,或得出没有通路的结论。图A2.2设计要求:要求设计程序输出如下:(1)建立一个大小为m×n的任意迷宫(迷宫数据可由用户输入或由程序自动生成),并在屏幕上显示出来;(2)找出一条通路的二元组(i,j)数据序列,(i,j)表示通路上某一点的坐标。(3)用一种标志(如数字8)在迷宫中标出该条通路;(4)在屏幕上输出迷宫和通路;(5)上述功能可用菜单选择。第5页共16页第3章课程设计总体方案及分析3.1问题分析:1.迷宫的建立:迷宫中存在通路和障碍,为了方便迷宫的创建,可用0表示通路,用1表示障碍,这样迷宫就可以用0、1矩阵来描述,2.迷宫的存储:迷宫是一个矩形区域,可以使用二维数组表示迷宫,这样迷宫的每一个位置都可以用其行列号来唯一指定,但是二维数组不能动态定义其大小,我们可以考虑先定义一个较大的二维数组maze[M+2][N+2],然后用它的前m行n列来存放元素,即可得到一个m×n的二维数组,这样(0,0)表示迷宫入口位置,(m-1,n-1)表示迷宫出口位置。注:其中M,N分别表示迷宫最大行、列数,本程序M、N的缺省值为39、39,当然,用户也可根据需要,调整其大小。3.迷宫路径的搜索:首先从迷宫的入口开始,如果该位置就是迷宫出口,则已经找到了一条路径,搜索工作结束。否则搜索其上、下、左、右位置是否是障碍,若不是障碍,就移动到该位置,然后再从该位置开始搜索通往出口的路径;若是障碍就选择另一个相邻的位置,并从它开始搜索路径。为防止搜索重复出现,则将已搜索过的位置标记为2,同时保留搜索痕迹,在考虑进入下一个位置搜索之前,将当前位置保存在一个队列中,如果所有相邻的非障碍位置均被搜索过,且未找到通往出口的路径,则表明不存在从入口到出口的路径。这实现的是广度优先遍历的算法,如果找到路径,则为最短路径。以矩阵00101为例,来示范一下100101000100100首先,将位置(0,0)(序号0)放入队列中,其前节点为空,从它开始搜索,其标记变为2,由于其只有一个非障碍位置,所以接下来移动到(0,1)(序号1),其前节点序号为第6页共16页0,标记变为2,然后从(0,1)移动到(1,1)(序号2),放入队列中,其前节点序号为1,(1,1)存在(1,2)(序号3)、(2,1)(序号4)两个可移动位置,其前节点序号均为2.对于每一个非障碍位置,它的相邻非障碍节点均入队列,且它们的前节点序号均为该位置的序号,所以如果存在路径,则从出口处节点的位置,逆序就可以找到其从出口到入口的通路。如下表所示:012345678910(0,0)(0,1)(1,1)(1,2)(2,1)(2,2)(1,3)(2,3)(0,3)(3,3)(3,4)-10122345679由此可以看出,得到最短路径:(3,4)(3,3)(2,3)(2,2)(1,2)(1,1)(0,1)(0,0)搜索算法流程图如下所示:第7页共16页3.2概要设计1.①构建一个二维数组maze[M+2][N+2]用于存储迷宫矩阵②自动或手动生成迷宫,即为二维数组maze[M+2][N+2]赋值③构建一个队列用于存储迷宫路径④建立迷宫节点structpoint,用于存储迷宫中每个节点的访问情况第8页共16页⑤实现搜索算法⑥屏幕上显示操作菜单2.本程序包含10个函数:(1)主函数main()(2)手动生成迷宫函数shoudong_maze()(3)自动生成迷宫函数zidong_maze()(4)将迷宫打印成图形print_maze()(5)打印迷宫路径(若存在路径)result_maze()(6)入队enqueue()(7)出队dequeue()(8)判断队列是否为空is_empty()(9)访问节点visit()(10)搜索迷宫路径mgpath()3.3详细设计实现概要设计中定义的所有数据类型及操作的伪代码算法1.节点类型和指针类型迷宫矩阵类型:intmaze[M+2][N+2];为方便操作使其为全局变量迷宫中节点类型及队列类型:structpoint{introw,col,predecessor}que[512]2.迷宫的操作(1)手动生成迷宫voidshoudong_maze(intm,intn){定义i,j为循环变量for(i=m)for(j=n)输入maze[i][j]的值}(2)自动生成迷宫voidzidong_maze(intm,intn){定义i,j为循环变量第9页共16页for(i=m)for(j=n)maze[i][j]=rand()%2//由于rand()产生的随机数是从0到RAND_MAX,RAND_MAX是定义在stdlib.h中的,其值至少为32767),要产生从X到Y的数,只需要这样写:k=rand()%(Y-X+1)+X;}(3)打印迷宫图形voidprint_maze(intm,intn){用i,j循环变量,将maze[i][j]输出□、■}(4)打印迷宫路径voidresult_maze(intm,intn){用i,j循环变量,将maze[i][j]输出□、■、☆}(5)搜索迷宫路径①迷宫中队列入队操作voidenqueue(structpointp){将p放入队尾,tail++}②迷宫中队列出队操作structpointdequeue(structpointp){head++,返回que[head-1]}③判断队列是否为空intis_empty(){返回head==tail的值,当队列为空时,返回0}④访问迷宫矩阵中节点voidvisit(introw,intcol,intmaze[41][41]){建立新的队列节点visit_point,将其值分别赋为row,col,head-1,maze[row][col]=2,表示该节点以被访问过;调用enqueue(visit_point),将该节点入队}⑤路径求解第10页共16页voidmgpath(intmaze[41][41],intm,intn){先定义入口节点为structpointp={0,0,-1},从maze[0][0]开始访问。如果入口处即为障碍,则此迷宫无解,返回0,程序结束。否则访问入口节点,将入口节点标记为访问过maze[p.row][p.col]=2,调用函数enqueue(p)将该节点入队。判断队列是否为空,当队列不为空时,则运行以下操作:{调用dequeue()函数,将队头元素返回给p,如果p.row==m-1且p.col==n-1,即到达出口节点,即找到了路径,结束如果p.col+1n且maze[p.row][p.col+1]==0,说明未到迷宫右边界,且其右方有通路,则visit(p.row,p.col+1,maze),将右边节点入队标记已访问如果p.row+1m且maze[p.row+1][p.col]==0,说明未到迷宫下边界,且其下方有通路,则visit(p.row+1,p.col,maze),将下方节点入队标记已访问如果p.col-10且maze[p.row][p.col-1]==0,说明未到迷宫左边界,且其左方有通路,则visit(p.row,p.col-1,maze),将左方节点入队标记已访问如果p.row-10且maze[p.row-1][p.col]==0,说明未到迷宫上边界,且其上方有通路,则visit(p.row,p.col+1,maze),将上方节点入队标记已访问}访问到出口(找到路径)即p.row==m-1且p.col==n-1,则逆序将路径标记为3即maze[p.row][p.col]==3;while(p.predecessor!=-1){p=queue[p.predecessor];maze[p.row][p.col]==3;}最后将路径图形打印出来。3.菜单选择while(cycle!=(-1))☆手动生成迷宫请按:1第11页共16页☆自动生成迷宫请按:2☆退出请按:3scanf(%d,&i);switch(i){case1:请输入行列数(如果超出预设范围则提示重新输入)shoudong_maze(m,n);print_maze(m,n);mgpath(maze,m,n);if(X!=0)result_maze(m,n);case2:请输入行列数(如果超出预设范围则提示重新输入)zidong_maze(m,n);print_maze(m,n);mgpath(maze,m,n);if(X!=0)result_maze(m,n);case3:cycle=(-1);break;}注:具体源代码见附录3.4调试分析在调试过程中,首先使用的是栈进行存储,但是产生的路径是多条或不是最短路径,所以通过算法比较,改用此算法3.5测试结果1.手动输入迷宫第12页共16页2.自动生成迷宫3.6参考文献【1】严蔚敏吴伟民《数据结构(C语言版)》清华大学出版社,2009年9月【2】谭浩强《C程序设计(第三版)》清华大学出版社2009年1月第13页共16页第2部分课程设计总结通过这段时间的课程设计,本人对计算机的应用,数据结构的作用以及C语言的使用都有了更深的了解。尤其是C语言的进步让我深刻的感受到任何所学的知识都需要实践,没有实践就无法真正理解这些知识以及掌握它们,使其成为自己的财富。在理论学习和上机实践的各个环节中,通过自主学习和请教老师,我收获了不少。当然也遇到不少的问题,也正是因为这些问题引发的思考给我带了收获。从当初不喜欢上机写程序到现在能主动写程序,从当初拿着程序不只如何下手到现在知道如何分析问题,如何用专业知识解决实际问题的转变,我发现无论是专业知识还是动手能力,自己都有很大程度的提高。在这段时间里,我对for、while等的循环函数用法更加熟悉,逐渐形成了较好的编程习惯。在老师的指导帮助下,同学们课余时间的讨论中,这些问题都一一得到了解决。在程序的调

1 / 16
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功