1第6章树和二叉树习题解答一、下面是有关二叉树的叙述,请判断正误(每小题1分,共10分)(√)1.若二叉树用二叉链表作存贮结构,则在n个结点的二叉树链表中只有n—1个非空指针域。(×)2.二叉树中每个结点的两棵子树的高度差等于1。(√)3.二叉树中每个结点的两棵子树是有序的。(×)4.二叉树中每个结点有两棵非空子树或有两棵空子树。(×)5.二叉树中每个结点的关键字值大于其左非空子树(若存在的话)所有结点的关键字值,且小于其右非空子树(若存在的话)所有结点的关键字值。(应当是二叉排序树的特点)(×)6.二叉树中所有结点个数是2k-1-1,其中k是树的深度。(应2i-1)(×)7.二叉树中所有结点,如果不存在非空左子树,则不存在非空右子树。(×)8.对于一棵非空二叉树,它的根结点作为第一层,则它的第i层上最多能有2i—1个结点。(应2i-1)(√)9.用二叉链表法(link-rlink)存储包含n个结点的二叉树,结点的2n个指针区域中有n+1个为空指针。(正确。用二叉链表存储包含n个结点的二叉树,结点共有2n个链域。由于二叉树中,除根结点外,每一个结点有且仅有一个双亲,所以只有n-1个结点的链域存放指向非空子女结点的指针,还有n+1个空指针。)即有后继链接的指针仅n-1个。(√)10.〖01年考研题〗具有12个结点的完全二叉树有5个度为2的结点。最快方法:用叶子数=[n/2]=6,再求n2=n0-1=5二、填空(每空1分,共15分)1.由3个结点所构成的二叉树有5种形态。2.【计算机研2000】一棵深度为6的满二叉树有n1+n2=0+n2=n0-1=31个分支结点和26-1=32个叶子。注:满二叉树没有度为1的结点,所以分支结点数就是二度结点数。3.一棵具有257个结点的完全二叉树,它的深度为9。(注:用log2(n)+1=8.xx+1=94.【全国专升本统考题】设一棵完全二叉树有700个结点,则共有350个叶子结点。答:最快方法:用叶子数=[n/2]=3505.设一棵完全二叉树具有1000个结点,则此完全二叉树有500个叶子结点,有499个度为2的结点,有1个结点只有非空左子树,有0个结点只有非空右子树。答:最快方法:用叶子数=[n/2]=500,n2=n0-1=499。另外,最后一结点为2i属于左叶子,右叶子是空的,所以有1个非空左子树。完全二叉树的特点决定不可能有左空右不空的情况,所以非空右子树数=0.6.【严题集6.7③】一棵含有n个结点的k叉树,可能达到的最大深度为n,最小深度为2。答:当k=1(单叉树)时应该最深,深度=n(层);当k=n-1(n-1叉树)时应该最浅,深度=2(层),但不包括n=0或1时的特例情况。教材答案是“完全k叉树”,未定量。)7.【试题1】二叉树的基本组成部分是:根(N)、左子树(L)和右子树(R)。因而二叉树的遍历次序有六种。最常用的是三种:前序法(即按NLR次序),后序法(即按LRN次序)和中序法(也称2对称序法,即按LNR次序)。这三种方法相互之间有关联。若已知一棵二叉树的前序序列是BEFCGDH,中序序列是FEBGCHD,则它的后序序列必是FEGHDCB。解:法1:先由已知条件画图,再后序遍历得到结果;法2:不画图也能快速得出后序序列,只要找到根的位置特征。由前序先确定root,由中序先确定左子树。例如,前序遍历BEFCGDH中,根结点在最前面,是B;则后序遍历中B一定在最后面。法3:递归计算。如B在前序序列中第一,中序中在中间(可知左右子树上有哪些元素),则在后序中必为最后。如法对B的左右子树同样处理,则问题得解。8.【全国专升本统考题】中序遍历的递归算法平均空间复杂度为O(n)。答:即递归最大嵌套层数,即栈的占用单元数。精确值应为树的深度k+1,包括叶子的空域也递归了一次。9.【计算机研2001】用5个权值{3,2,4,5,1}构造的哈夫曼(Huffman)树的带权路径长度是33。解:先构造哈夫曼树,得到各叶子的路径长度之后便可求出WPL=(4+5+3)×2+(1+2)×3=33(15)(9)(6)(注:两个合并值先后不同会导致编码不同,即哈夫曼编码不唯一)453(3)(注:合并值应排在叶子值之后)12(注:原题为选择题:A.32B.33C.34D.15)三、单项选择题(每小题1分,共11分)(C)1.不含任何结点的空树。(A)是一棵树;(B)是一棵二叉树;(C)是一棵树也是一棵二叉树;(D)既不是树也不是二叉树答:以前的标答是B,因为那时树的定义是n≥1(C)2.二叉树是非线性数据结构,所以。(A)它不能用顺序存储结构存储;(B)它不能用链式存储结构存储;(C)顺序存储结构和链式存储结构都能存储;(D)顺序存储结构和链式存储结构都不能使用(C)3.〖01年计算机研题〗具有n(n0)个结点的完全二叉树的深度为。(A)log2(n)(B)log2(n)(C)log2(n)+1(D)log2(n)+1注1:x表示不小于x的最小整数;x表示不大于x的最大整数,它们与[]含义不同!注2:选(A)是错误的。例如当n为2的整数幂时就会少算一层。似乎log2(n)+1是对的?(A)4.把一棵树转换为二叉树后,这棵二叉树的形态是。(A)唯一的(B)有多种(C)有多种,但根结点都没有左孩子(D)有多种,但根结点都没有右孩子5.【P11】从供选择的答案中,选出应填入下面叙述?内的最确切的解答,把相应编号写在答卷的对应栏内。树是结点的有限集合,它A根结点,记为T。其余的结点分成为m(m≥0)个B的集合T1,T2,…,Tm,每个集合又都是树,此时结点T称为Ti的父结点,Ti称为T的子结点(1≤i≤m)。一个结点的子结点个数为该结点的C。供选择的答案A:①有0个或1个②有0个或多个③有且只有1个④有1个或1个以上3B:①互不相交②允许相交③允许叶结点相交④允许树枝结点相交C:①权②维数③次数(或度)④序答案:ABC=1,1,36.【P13】从供选择的答案中,选出应填入下面叙述?内的最确切的解答,把相应编号写在答卷的对应栏内。二叉树A。在完全的二叉树中,若一个结点没有B,则它必定是叶结点。每棵树都能惟一地转换成与它对应的二叉树。由树转换成的二叉树里,一个结点N的左子女是N在原树里对应结点的C,而N的右子女是它在原树里对应结点的D。供选择的答案A:①是特殊的树②不是树的特殊形式③是两棵树的总称④有是只有二个根结点的树形结构B:①左子结点②右子结点③左子结点或者没有右子结点④兄弟C~D:①最左子结点②最右子结点③最邻近的右兄弟④最邻近的左兄弟⑤最左的兄弟⑥最右的兄弟答案:A=B=C=D=答案:ABCDE=2,1,1,3四、简答题(每小题4分,共20分)1.【严题集6.2①】一棵度为2的树与一棵二叉树有何区别?答:度为2的树从形式上看与二叉树很相似,但它的子树是无序的,而二叉树是有序的。即,在一般树中若某结点只有一个孩子,就无需区分其左右次序,而在二叉树中即使是一个孩子也有左右之分。2.〖01年计算机研题〗设如下图所示的二叉树B的存储结构为二叉链表,root为根指针,结点结构为:(lchild,data,rchild)。其中lchild,rchild分别为指向左右孩子的指针,data为字符型,root为根指针,试回答下列问题:1.对下列二叉树B,执行下列算法traversal(root),试指出其输出结果;2.假定二叉树B共有n个结点,试分析算法traversal(root)的时间复杂度。(共8分)二叉树B解:这是“先根再左再根再右”,比前序遍历多打印各结点一次,输出结果为:ABCCEEBADFFDGG特点:①每个结点肯定都会被打印两次;②但出现的顺序不同,其规律是:凡是有左子树的结点,必间隔左子树的全部结点后再重复出现;如A,B,D等结点。反之马上就会重复出现。如C,E,F,G等结点。时间复杂度以访问结点的次数为主,精确值为2*n,时间渐近度为O(n).3.〖01年计算机研题〗【严题集6.27③】给定二叉树的两种遍历序列,分别是:前序遍历序列:D,A,C,E,B,H,F,G,I;中序遍历序列:D,C,B,E,H,A,G,I,F,试画出二叉树B,并简述由任意二叉树B的前序遍历序列和中序遍历序列求二叉树B的思想方法。解:方法是:由前序先确定root,由中序可确定root的左、右子树。然后由其左子树的元素集合和右子树ABDCFGEC的结点类型定义如下:structnode{chardata;structnode*lchild,rchild;};C算法如下:voidtraversal(structnode*root){if(root){printf(“%c”,root-data);traversal(root-lchild);printf(“%c”,root-data);traversal(root-rchild);}}4的集合对应前序遍历序列中的元素集合,可继续确定root的左右孩子。将他们分别作为新的root,不断递归,则所有元素都将被唯一确定,问题得解。DACFEGBHI4.【计算机研2000】给定如图所示二叉树T,请画出与其对应的中序线索二叉树。解:要遵循中序遍历的轨迹来画出每个前驱和后继。中序遍历序列:55402560280833542825334060085455五、阅读分析题(每题5分,共20分)1.(P604-26)试写出如图所示的二叉树分别按先序、中序、后序遍历时得到的结点序列。答:DLR:ABDFJGKCEHILMLDR:BFJDGKACHELIMLRD:JFKGDBHLMIECA2.(P604-27)把如图所示的树转化成二叉树。答:注意全部兄弟之间都要连线(包括度为2的兄弟),并注意原有连线结点一律归入左子树,新添连线结点一律归入右子树。ABECKFHDLGIMJ3.【严题集6.17③】阅读下列算法,若有错,改正之。2825334060085455BiTreeInSucc(BiTreeq){//已知q是指向中序线索二叉树上某个结点的指针,//本函数返回指向*q的后继的指针。r=q-rchild;//应改为r=q;if(!r-rtag)while(!r-rtag)r=r-rchild;//应改为while(!r-Ltag)r=r-Lchild;returnr;//应改为returnr-rchild;}//ISucc答:这是找结点后继的程序。共有3处错误。注:当rtag=1时说明内装后继指针,可直接返回,第一句无错。当rtag=0时说明内装右孩子指针,但孩子未必是后继,需要计算。中序遍历应当先左再根再右,所以应当找左子树直到叶子处。r=r-lchild;直到LTag=1;282540555560330854NILNIL54.【严题集6.21②】画出和下列二叉树相应的森林。答:注意根右边的子树肯定是森林,而孩子结点的右子树均为兄弟。六、算法设计题(前5题中任选2题,第6题必做,每题8分,共24分)1.【严题集6.42③】编写递归算法,计算二叉树中叶子结点的数目。解:思路:输出叶子结点比较简单,用任何一种遍历递归算法,凡是左右指针均空者,则为叶子,将其打印出来。法一:核心部分为:DLR(liuyu*root)/*中序遍历递归函数*/{if(root!=NULL){if((root-lchild==NULL)&&(root-rchild==NULL)){sum++;printf(%d\n,root-data);}DLR(root-lchild);DLR(root-rchild);}return(0);}法二:intLeafCount_BiTree(BitreeT)//求二叉树中叶子结点的数目{if(!T)return0;//空树没有叶子elseif(!T-lchild&&!T-rchild)return1;//叶子结点elsereturnLeaf_Count(T-lchild)+Leaf_Count(T-rchil