弹簧的能量专题1、如图所示,固定的竖直光滑长杆上套有质量为m的小圆环.圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态。现让圆环由静止开始下滑,已知弹簧原长为L,圆环下滑到最大距离时弹簧的长度变为2L(未超过弹性限度),则在圆环下滑到最大距离的过程中A.圆环的机械能守恒B.弹簧弹性势能变化了mgLC.圆环下滑到最大距离时.所受合力为零D.圆环重力势能与弹簧弹性势能之和保持不变2、如图所示,轻质弹簧一端固定,另一端与质量为m、套在粗糙竖直固定杆A处的圆环相连,弹簧水平且处于原长。圆环从A处由静止开始下滑,经过B处的速度最大,到达C处的速度为零,AC=h。圆环在C处获得一竖直向上的速度v,恰好能回到A;弹簧始终在弹性限度之内,重力加速度为g,则圆环A.下滑过程中,加速度一直减小B.下滑过程中,克服摩擦力做功为214mvC.在C处,弹簧的弹性势能为214mvmghD.上滑经过B的速度大于下滑经过B的速度3、在倾角为θ的光滑斜面上放有两个用轻弹簧相连接的物块A、B,它们的质量分别为m1、m2(m1<m2),弹簧的劲度系数为k,C为一固定挡板,系统处于静止状态,如图所示.现开始用一恒力F沿斜面方向拉物块A使之向上运动,当物块B刚要离开C时,物块A运动的距离为d,速度为v.则()A.此时物块A的加速度为F-kdm1B.该过程中,物块A的速度逐渐增大C.此时物块A所受重力做功的功率为m1gvD.该过程中,弹簧弹性势能的增加量为Fd-m1gdsinθ-12m1v24、如图547所示,固定斜面的倾角θ=30°,物体A与斜面之间的动摩擦因数μ=32,轻弹簧下端固定在斜面底端,弹簧处于原长时上端位于C点。用一根不可伸长的轻绳通过轻质光滑的定滑轮连接物体A和B,滑轮右侧绳子与斜面平行,A的质量为2m,B的质量为m,初始时物体A到C点的距离为L。现给A、B一初速度v0>gL,使A开始沿斜面向下运动,B向上运动,物体A将弹簧压缩到最短后又恰好能弹到C点。已知重力加速度为g,不计空气阻力,整个过程中,轻绳始终处于伸直状态,求:图547(1)物体A向下运动刚到C点时的速度;(2)弹簧的最大压缩量;(3)弹簧的最大弹性势能。5、如图所示,质量mB=3.5kg的物体B通过一轻弹簧固连在地面上,弹簧的劲度系数k=100N/m.一轻绳一端与物体B连接,绕过无摩擦的两个轻质小定滑轮O1、O2后,另一端与套在光滑直杆顶端的、质量mA=1.6kg的小球A连接.已知直杆固定,杆长L为0.8m,且与水平面的夹角θ=37°.初始时使小球A静止不动,与A端相连的绳子保持水平,此时绳子中的张力F为45N.已知AO1=0.5m,重力加速度g取10m/s2,绳子不可伸长.现将小球A从静止释放,则:(1)在释放小球A之前弹簧的形变量;(2)若直线CO1与杆垂直,求物体A运动到C点的过程中绳子拉力对物体A所做的功;(3)求小球A运动到底端D点时的速度.6、如图所示,质量为m1的物体A经一轻质弹簧与下方斜面上的质量为m2的物体B相连,弹簧的劲度系数为k,斜面是光滑的,其倾角为θ.A、B都处于静止状态.一条不可伸长的轻绳绕过轻滑轮,一端连物体A,另一端连一轻挂钩.开始时各段绳都处于伸直状态,A上方的一段绳沿斜面方向.现在挂钩上挂一质量为m3的物体C并从静止状态释放,已知它恰好能使B离开挡板但不继续上升.若将C换成另一个质量为(m1+m3)的物体D,仍从上述初始位置由静止状态释放,已知重力加速度为g.求:(1)当B刚离开挡板时物体A的加速度(2)当B刚离开挡板时D的速度大小是多少?7、如图所示,倾角为θ的直角斜面体固定在水平地面上,其顶端固定有一轻质定滑轮,轻质弹簧和轻质细绳相连,一端接质量为m2的物块B,物块B放在地面上且使滑轮和物块间的细绳竖直,一端连接质量为m1的物块A,物块A放在光滑斜面上的P点保持静止,弹簧和斜面平行,此时弹簧具有的弹性势能为Ep.不计定滑轮、细绳、弹簧的质量,不计斜面、滑轮的摩擦,已知弹簧劲度系数为k,P点到斜面底端的距离为L.现将物块A缓慢斜向上移动,直到弹簧刚恢复原长时的位置,并由静止释放物块A,当物块B刚要离开地面时,物块A的速度即变为零,求:在以后的运动过程中物块A最大速度的大小.8、如图所示,倾角θ=37°的光滑且足够长的斜面固定在水平面上,在斜面顶端固定一个轮半径和质量不计的光滑定滑轮D,质量均为m=1kg的体A和B用一劲度系数Bk=240N/m的轻弹簧连接,物体B被位于斜面底端且垂直于斜面P的挡板P挡住.用一不可伸长的轻绳使物体A跨过定滑轮与质量为M的小环C连接,小环C穿过竖直固定的光滑均匀细杆,当整个系统静止时,环C位于Q处,绳与细杆的夹角α=53°,且物体B对挡板P的压力恰好为零.图中SD水平且长度为d=0.2m,位置R与位置Q关于位置S对称,轻弹簧和定滑轮右侧的绳均与斜面平行.现让环C从位置R由静止释放,sin37°=0.6,cos37°=0.8,g取10m/s2.求:(1)小环C的质量M;(2)小环C通过位置S时的动能Ek及环从位置R运动到位置S的过程中轻绳对环做的功WT;(3)小环C运动到位置Q的速率v.9、如图所示,在海滨游乐场里有一种滑沙运动.某人坐在滑板上从斜坡上的A点由静止开始下滑,经过时间t滑到斜坡上的B点,并与一减速弹簧相接触,滑板继续下滑距离x到达C点时速度减为零.已知斜坡的倾角为θ,重力加速度为g,滑板与人的总质量为m,滑板与沙的动摩擦因数为μ,不计弹簧的质量.求:(1)定性说明滑板从接触弹簧到速度变为零的过程中加速度和速度的变化情况;(2)由A到B过程中滑板克服摩擦力所做的功;(3)由B到C过程中,人和滑板总共损失的机械能以及弹簧的最大弹性势能各为多大?10、如图所示,AB是与水平方向成θ=37°的斜面轨道,轨道的AC部分光滑,CB部分粗糙,BP为圆心角等于143°,半径R=3m的竖直光滑圆弧形轨道,两轨道相切于B点,P、O两点在同一竖直线上,轻弹簧一端固定在A点,另一端在斜面上C点处,现有一质量m=4kg的物块在外力作用下将弹簧缓慢压缩到D点后(不栓接)释放,物块经过C点时速度为18m/s,=2m,物块与斜面CB部分之间的动摩擦因数μ=0.5,XBC=9m,P处安装一个竖直弹性薄挡板,小物块与挡板碰撞后以原速率弹回,sin37°=0.6,cos37°=0.8,g取10m/s2.(1)物块从D点运动到C点的过程中,弹簧对物块所做的功;(2)物块第一次到达P点的速度;(3)物块第一次返回斜面后将弹簧压缩至最短点E(E为DC的中点),则此时弹簧的弹性势能;(4)整个运动过程中,物块在斜面上运动时可以有多少次通过CB之间的M点(M与C相距0.5m)