广州市铁一中学第一类:形如an+1=A·an+B例1已知)2(5)23(,21711naaann,求na解:设)(231kakann,则由已知得k=2,即{an-2}成等比数列。练1:已知数列{an}中,a1=1,an+1=2an+1。求an。例2已知a1=1,n≥2时,2311nnnaaa,求an.解:取倒数得31211nnaa,设nnab1,则321nnbb,即归结为求{bn}的通项。若c≠0,则可设常数k、m满足:eadkamkannn11)(,转为求}1{kan的通项。练2:已知a1=1,n≥2时,23211nnnaaa,求an.第二类:形如:an+1=Aan+Ban-1例3:已知数列{}na满足211256,1,2nnnaaaaa,求数列{}na的通项公式。解:法1:设211(5)()nnnnaaaa比较系数得3或2,不妨取2,(取-3结果形式可能不同,但本质相同)则21123(2)nnnnaaaa,则12nnaa是首项为4,公比为3的等比数列11243nnnaa,所以114352nnna法2:an+2+Kan+1=(5+k)an+1-6an=(5+k)(an+1-6/(5+k)an)K=-2或-3an+2-2an+1=3(an+1-2an)练习3.数列{}na中,若2,821aa,且满足03412nnnaaa,求na.答案:nna311.第三类:形如:an+1=Aan+f(n)例4:已知)2(123,2111nnaaann,求an.例5已知a1=-1,an=3an-1+2n(n≥2),求an.