循环球式整体式动力转向器1.结构(1)组成:图19-11所示为一种液压整体式动力转向器。它主要由同于循环球式的机械转向器、动力缸及转阀式转向控制阀等部分组成。液压动力转向器(2)转向器:用于机械循环球式转向器的转向螺母被制成圆柱形,称为齿条-活塞19,它既是转向器中的转向螺母和齿条,又是动力缸中的活塞。齿条-活塞内制有截面为半圆形的螺旋槽,与其配合的转向螺杆17外表面也制有截面为半圆形的螺旋槽,二者配合能形成截面为圆形的螺旋管状通道,在转向螺杆与齿条-活塞间装有钢球,利用循环球导管23让其构成回路。扇齿与转向摇臂轴18制成一体,利用调整螺钉27调整扇齿与齿条-活塞间的啮合间隙。(3)动力缸:齿条-活塞的下圆柱表面上,即图中的左圆柱表面上,有一环形槽。在槽上装有聚四氟乙烯环和o型密封圈20,以保证活塞装入动力缸以后密封和耐磨。这样将动力缸分成上、下两个密封腔,即图中的右腔和左腔。上、下两密封腔又分别通过设在转向器壳体上的油道与转向控制阀相通。上腔为左转向动力腔,下腔为右转向动力腔。转向控制阀位于动力转向器的上部,它主要由阀体13、转阀12及扭杆轴组件等组成。(4)控制阀阀体:阀体滑装在壳体22上部孔中,制成圆桶形。在其外圆柱形表面上,制有三道较宽深的槽和三道较窄浅的槽。宽深的槽是环形的油槽(也称油环槽),其底部开有与内壁相通的油孔。中间油环槽的4个油孔直径较大,是进油通道,与转向油泵相通。两侧油环槽各有四个直径较小的油孔,与动力缸相通。窄浅的环槽用于安装密封圈组件。阀体的下边缘开有矩形缺口,此缺口与转向器螺杆用锁定销16相卡,形成阀体驱动螺杆的传力连接。在阀体的中部固定有锁定销29。此锁的外端埋在外圆表面以下,内端伸出少许,与扭杆轴组件下端轴盖14外圆上的缺口相卡,互相不能发生相对转动。阀体的内表面制有八条不贯通的纵槽,形成八道槽肩,与转阀的纵槽和槽肩形成工作液流动的间隙。(5)转阀:转阀制成圆桶形,其外圆与阀体滑动配合(间隙很小、配合精度很高,与阀体组成偶件,不可单独更换),表面上也制有八条不贯通的纵槽,形成八道槽肩,与阀体的纵槽和槽肩配合形成液体流动间隙。在转阀的槽肩上开有径向通孔,用以流通液压油。转阀的上端开有槽,用来安装0形密封圈10,转阀的内圆柱面下端开有缺口,短轴下端安装的锁定销30即卡入此缺口中,以保证短轴和转阀的同步转动,而不发生相对角位移。转阀和短轴间留有很大的径向间隙,用以流通回流的油液。(6)扭杆轴组件:短轴3、扭杆轴4、下端轴盖14和销钉30、2组成扭杆轴组件。短轴为空心管状轴件,其上端外表面制有三角形花键,与转向轴下端的万向节相连,转向盘的扭矩由此输入。短轴与扭杆轴上端通过销钉2固定在一起。扭杆轴的下端通过三角形花键与下端轴盖14固定;下端轴盖为圆盘形零件,其外圆与阀体下端止口滑配并卡在阀体锁定销29上。此圆盘形零件的辐板上开有两个对称的腰形槽孔,转向器螺杆上端法兰盘的外圆滑配在阀体的下端止口中,法兰盘上端的叉形凸块就卡入下端轴盖的腰形槽孔中,但两者之间间隙较大,允许有一定的相对角位移,以保证扭杆轴的扭转。(7)调整螺塞:调整螺塞6拧在转向器壳体上端的螺纹孔中,内部装有滚针轴承34支承着短轴,下端装有滚针轴承9使阀体可旋转,并且使阀体锁定销29和16与下端轴盖和转向螺杆法兰盘轴向靠紧。调整螺塞下部装有弹簧,以压紧转阀,阻止转阀轴向移动并使之与短轴下端的锁定销30轴向靠紧。在转向螺杆法兰盘下面还装有止推轴承28,以保证螺杆和转阀组件转动灵活和轴向定位。(8)进油口和出油口:在动力转向器上部设有进油口32和出油口33,通过油管分别与转向油泵和转向油罐相接。在进油口处设有进油口座和止回阀,进油口与阀体的中油环槽相通。出油口和短轴与转阀形成的回油腔相通。在转向器壳体上开有两条贯通的油道,一条上端与阀体的下油环槽相通,下端与动力缸上腔室fp左转向动力腔相通。另一条上端与阀体的上油环槽相通,下端与动力缸的下腔室即右转向动力腔室相通。2.工作原理(1)当汽车直线行驶时:转阀处于中间位置,如图19-12a所示,来自转向油泵的工作液从转向器壳体的进油口流到阀体的中油环槽中。参见图19-12b,经过其槽底的通孔进入阀体和转阀之间,此时因转阀处于中间位置,所以进入的油液分别通过阀体和转阀纵槽槽肩形成的两边相等的间隙,再通过转阀的纵槽和阀体的纵槽以及阀体的径向孔流向阀体外圆上、下油环槽,然后通过壳体中的两条油道分别流到动力缸的上、下腔中去,即左转向动力腔l和右转向动力腔r,但上、下腔油压相等且很小。此时齿条-活塞既没有受到转向螺杆所造成的轴向推力,也没有受到上、下腔因压力差造成的轴向推力,所以齿条-活塞处于中间位置,动力转向不工作。流入阀体内腔的油液在通过转阀纵槽流向阀体上、下油环槽的同时,通过转阀槽肩上的径向油孔流到转阀与扭杆轴组件之间的空隙中,经阀体组件和调整螺塞之间的空隙流到回油口,经油管回到油罐中去,形成了常流式油液循环。汽车直线行驶(2)当汽车左转弯时:参见图19-13,转动转向盘,使短轴逆时针转动,通过其下端轴销子带动转阀同步转动,这个扭矩也通过具有弹性的扭杆轴传给下端轴盖,下端轴盖边缘上的缺口通过固定在阀体上的销子带动阀体转动,阀体通过其下端缺口和销子,把转向力矩传给螺杆。由于转向阻力的存在,要有足够的转向力矩才能使转向螺杆转动。这个扭矩促使扭杆轴发生弹性扭转,造成阀体的转动角度小于转阀的转动角度,两者产生相对角位移(参见图19-13a)。通下动力腔的进油缝隙减小(或封闭),回油缝隙增大油压降低;通上动力腔的进油缝隙增大而回油缝隙减小(或关闭),油压升高,上、下动力腔产生油压差。齿条-活塞便在上、下腔油压差的作用下移动,产生助力作用。此时来自转向油泵的压力油通过槽隙流向动力缸上腔,动力缸下腔的油则通过阀体径向孔、槽隙、转阀径向孔和回油口流向储油罐,参见图19-13b)。左转弯(3)右转弯基本相似,参见图19-14。不同的是由于转向方向相反,造成的阀体和转阀的角位移相反,齿条-活塞下腔压力升高而上腔油压降低,产生右转向助力。右转弯(4)当转向盘停在某一位置不再继续转动时:此时阀体随螺杆在液力和扭杆轴弹力的作用下,沿转向盘转动方向旋转一个角度,使之与转阀相对角位移量减小,上、下动力腔油压差减小。但仍有一定的助力作用,此时的助力扭矩与车轮的回正力矩相平衡,使车轮维持在某一转向位置上。(5)渐进随动原理:在转向过程中,若转向盘转动的速度快,阀体与转阀相对的角位移量也大,上、下动力腔的油压差也相应加大,前轮偏转的速度也加快,如转向盘转动的慢,前轮偏转的也慢;若转向盘转在某一位置上不变,对应着前轮也转在某一位置上不变。此即谓“渐进随动原理”,也就是:“快转快助,大转大助,不转不助”原理。(6)转向后需回正时,如果驾驶员放松转向盘,转阀回到中间位置,失去了助力作用,此时转向轮在回正力矩的作用下自动回位;若司机同时回转转向盘时,转向助力器助力,帮助车轮回正。(7)当汽车直线行驶偶遇外界阻力使转向轮发生偏转时:阻力矩通过转向传动机构、转向螺杆、螺杆与阀体的锁定销作用在阀体上,使之与转阀之间产生相对角位移,这样使动力缸上、下腔油压不等,产生了与转向轮转向相反的助力作用。在此力的作用下,转向轮迅速回正,保证了汽车直线行驶的稳定性。一旦液压助力装置失效,该动力转向器即变成机械转向器。此时转动转向盘,带动短轴转动,短轴下端法兰盘边缘有弧形缺口(参见图19-11),转过一定角度后,通过螺杆上端法兰盘的凸块带动螺杆旋转,以保证汽车转向。不过这时转向盘的自由行程加大,转向沉重。