微型计算机原理与接口原理第1章.

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1微机原理与接口技术大家好!2课程目标掌握:微型计算机的基本工作原理汇编语言程序设计方法微型计算机接口技术建立微型计算机系统的整体概念,形成微机系统软硬件开发的初步能力3教材及实验指导书教材:《微机原理与接口技术》(第3版).冯博琴,吴宁主编.清华大学出版社实验指导书《微机原理与接口技术实验指导书》(讲义)陈文革,吴宁,夏秦编.西安交通大学《微机原理与接口技术题解及实验指导》(第3版).吴宁,陈文革编.清华大学出版社4第1章微型计算机基础概论主要内容:微机系统的组成计算机中的编码、数制及其转换无符号二进制数的运算算术运算和逻辑运算运算中的溢出机器数的表示及运算基本逻辑门及译码器5微型计算机系统微型机的工作原理微机系统的基本组成6一、计算机的工作原理计算机中的指令执行过程冯•诺依曼计算机工作原理非冯•诺依曼计算机特点71.计算机中的指令执行过程计算机的工作是逐条执行由指令构成的程序指令:由人向计算机发出的、能够为计算机所识别的命令。8指令执行的一般过程取指令取指部件,分析部件,执行部件指令译码读取操作数执行指令存放结果9指令的顺序执行和并行执行顺序执行方式:各功能部件交替工作,按顺序完成指令的执行过程。并行流水线方式:各功能部件并行工作。10顺序工作方式取指令1执行指令1分析指令1CPUBUS忙碌忙碌取指令2执行指令2分析指令211并行流水线工作方式EU取指令1执行指令1分析指令1CPU取指令2执行指令2分析指令2取指令3执行指令3分析指令3BIU忙碌忙碌忙碌忙碌忙碌2.冯•诺依曼计算机冯•诺依曼计算机的工作原理存储程序工作原理结构特点运算器为核心1213冯•诺依曼计算机体系结构运算器存储器控制器输入设备输出设备14冯•诺依曼机的工作过程内存中的程序指令1指令2指令n┇分析获取操作数执行存放结果┇程序计数器PC地址CPU取出操作数15冯•诺依曼机的工作过程取一条指令的工作过程:将指令所在地址赋给程序计数器PC;PC内容送到地址寄存器AR,PC自动加1;把AR的内容通过地址总线送至内存储器,经地址译码器译码,选中相应单元。CPU的控制器发出读命令。在读命令控制下,把所选中单元的内容(即指令操作码)读到数据总线DB。把读出的内容经数据总线送到数据寄存器DR。指令译码因为取出的是指令的操作码,故数据寄存器DR把它送到指令寄存器IR,然后再送到指令译码器ID内存单元地址PC1000FH地址寄存器1000FH+1“读存储器”命令指令译码数据总线B1H┇┇内存储器地址总线B1H1000FH微机读取一条指令的工作过程:冯•诺依曼机的特点和不足特点:程序存储,共享数据,顺序执行属于顺序处理机,适合于确定的算法和数值数据的处理。不足:与存储器间有大量数据交互,对总线要求很高;执行顺序由程序决定,对大型复杂任务较困难;以运算器为核心,处理效率较低;由PC控制执行顺序,难以进行真正的并行处理。173.非冯•诺依曼机结构主要特征并行性典型类型数据流计算机结构(DataflowImageProcessingSystem)哈佛结构(HarvardArchitecture)18数据流计算机结构采用数据驱动方式程序的执行顺序不是由程序计数器控制,而是由指令间的数据流控制当指令具有所需数据、且输出端没有数据时就可执行。19数据流处理机存储器主处理机数据通道控制通道高速数据总线磁盘存储器采用数据驱动数据流计算机结构数据流处理机工作原理20EUEUEUEU环形接口运算模块访问模块WR接口控制器主处理机存储器EUEUEU:执行部件W:写操作部件R:读操作部件哈佛结构指令和数据分别存放在两个独立的存储器模块中;CPU与存储器间指令和数据的传送分别采用两组独立的总线;可以在一个机器周期内同时获得指令操作码和操作数。21CPU程序存储器数据存储器地址信号地址信号数据信号数据信号22二、微机系统组成主机硬件系统外设微机系统系统软件软件系统应用软件CPU存储器输入/输出接口总线231.微处理器微处理器简称CPU,是计算机的核心。主要包括:运算器控制器寄存器组242.存储器定义:用于存放计算机工作过程中需要操作的数据和程序。25有关内存储器的几个概念内存单元的地址和内容内存容量内存的操作内存的分类26内存单元的地址和内容内存按单元组织每单元都对应一个地址,以方便对单元的寻址1011011038F04H内存地址单元内容27内存容量内存容量:所含存储单元的个数,以字节为单位内存容量的大小依CPU的寻址能力而定实地址模式下为CPU地址信号线的位数28内存操作读:将内存单元的内容取入CPU,原单元内容不改变;写:CPU将信息放入内存单元,单元中原来的内容被覆盖。29内存储器的分类随机存取存储器(RAM)只读存储器(ROM)按工作方式可分为303.输入/输出接口接口是CPU与外部设备间的桥梁CPUI/O接口外设31接口的分类串行接口并行接口数字接口模拟接口输入接口输出接口32接口的功能数据缓冲寄存;信号电平或类型的转换;实现主机与外设间的运行匹配。334.总线基本概念分类工作原理常用系统总线标准及其主要技术指标(具体内容见后续课程)345.软件系统软件:为运行、管理和维护计算机系统或为实现某一功能而编写的各种程序的总和及其相关资料。系统软件应用软件操作系统编译系统网络系统工具软件软件35计算机中的数制和编码数制和编码的表示各种计数制之间的相互转换36一、数制1.计算机中的常用计数制十进制(D)二进制(B)十六进制(H)37例:234.98D或(234.98)D1101.11B或(1101.11)BABCD.BFH或(ABCD.BF)H382.各种进制数间的转换非十进制数到十进制数的转换十进制到非十进制数的转换二进制与十六进制数之间的转换39非十进制数到十进制数的转换按相应的权值表达式展开例:1011.11B=1×23+0×22+1×21+1×20+1×2-1+1×2-2=8+2+1+0.5+0.25=11.755B.8H=5×161+11×160+8×16-1=80+11+0.5=91.540十进制到非十进制数的转换到二进制的转换:对整数:除2取余;对小数:乘2取整。到十六进制的转换:对整数:除16取余;对小数:乘16取整。41二进制与十六进制间的转换用4位二进制数表示1位十六进制数例:25.5=11001.1B=19.8H11001010.0110101B=CA.6AH42二、计算机中的编码BCD码用二进制编码表示的十进制数ASCII码西文字符编码431.BCD码压缩BCD码用4位二进制码表示一位十进制数每4位之间有一个空格扩展BCD码用8位二进制码表示一位十进制数,每4位之间有一个空格。44BCD码与二进制数之间的转换先转换为十进制数,再转换二进制数;反之同样。例:(00010001.00100101)BCD=11.25=(1011.01)B452.ASCII码西文字符的编码,一般用7位二进制码表示。D7位为校验位,默认情况下为0。要求:理解校验位的作用熟悉0---F的ASCII码46ASCII码的奇偶校验奇校验加上校验位后编码中“1”的个数为奇数。例:A的ASCII码是41H(1000001B)以奇校验传送则为C1H(11000001B)偶校验加上校验位后编码中“1”的个数为偶数。上例若以偶校验传送,则为41H。47二进制数的运算算术运算逻辑运算无符号数有符号数二进制数的运算48一、无符号数的运算主要内容:无符号二进制数的算术运算无符号数的表达范围运算中的溢出问题无符号数的逻辑运算基本逻辑门和译码器491.无符号数的算术运算加法运算1+1=0(有进位)减法运算0-1=1(有借位)乘法运算除法运算50乘除运算例00001011×0100=00101100B00001011÷0100=00000010B即:商=00000010B余数=11B512.无符号数的表示范围:0≤X≤2n-1若运算结果超出这个范围,则产生溢出。对无符号数:运算时,当最高位向更高位有进位(或借位)时则产生溢出。52[例]:最高位向前有进位,产生溢出533.逻辑运算与、或、非、异或掌握:与、或、非门逻辑符号和逻辑关系(真值表);与非门、或非门的应用。54“与”、“或”运算“与”运算:任何数和“0”相“与”,结果为0。“或”运算:任何数和“1”相“或”,结果为1。&≥155“非”、“异或”运算“非”运算按位求反“异或”运算相同则为0,相异则为11&≥1逻辑关系例例1例2:5611110?00000?574.译码器掌握74LS138译码器各引脚功能输入端与输出端关系(真值表)5874LS138译码器G1G2AG2BCBAY0Y7••••主要引脚及功能使能端输入端输出端G1#G2A#G2BCBA#Y0#Y1#Y2#Y3#Y4#Y5#Y6#Y711010010010010010010010010000000101001110010111011111111111111111110111111110111111110111111110111111110111111110111111110111111110二、有符号数的表示和运算机器数及其表示符号数的表示有符号数与十进制数的转换补码的运算和溢出59601.机器数机器数计算机中的数据构成:符号位+真值“0”表示正“1”表示负61[例]+52=+0110100=00110100符号位真值-52=-0110100=10110100符号位真值622.符号数的表示机器数的表示方法:原码反码补码63原码最高位为符号位(用“0”表示正,用“1”表示负),其余为真值部分。优点:真值和其原码表示之间的对应关系简单,容易理解;缺点:计算机中用原码进行加减运算比较困难0的表示不唯一。64数0的原码8位数0的原码:+0=00000000-0=10000000即:数0的原码不唯一。65反码对一个机器数X:若X0,则[X]反=[X]原若X0,则[X]反=对应原码的符号位不变,数值部分按位求反66[例]X=-52=-0110100[X]原=10110100[X]反=11001011670的反码:[+0]反=00000000[-0]反=11111111即:数0的反码也不是唯一的。68补码定义:若X0,则[X]补=[X]反=[X]原若X0,则[X]补=[X]反+169[例]X=–52=–0110100[X]原=10110100[X]反=11001011[X]补=[X]反+1=11001100700的补码:[+0]补=[+0]原=00000000[-0]补=[-0]反+1=11111111+1=100000000对8位字长,进位被舍掉71特殊数10000000对无符号数:(10000000)B=128在原码中定义为:-0在反码中定义为:-127在补码中定义为:-12872符号数的表示范围对8位二进制数:原码:-127~+127反码:-127~+127补码:-128~+127733.符号二进制数与十进制的转换对用补码表示的二进制数:1)求出真值2)进行转换74[例]:补码数转换为十进制数[X]补=00101110B正数所以:真值=0101110BX=+46[X]补=11010010B负数所以:真值不等于-1010010B而是:X=[[X]补]补=[11010010]补=-0101110=-46754.符号数的算术运算通过引进补码,可将减法运算转换为加法运算。即:[X+Y]补=[X]补+[Y]补[X-Y]补=[X+(-Y)]补=[X]补+[-Y]补注:运算时符号位须对齐76

1 / 79
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功