微弱信号的多级放大电路课程设计报告

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

微弱信号的多级放大电路课程设计报告设计题目:微弱信号的多级放大电路学院:信息工程学院专业:网络工程姓名:赵骞组长:陈子宇学号:201324070106指导教师:杨云成绩:2015年07月02日1目录第一章概述••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••2第二章知识扩展••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••32.1低频电压放大器••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••32.2集成运算放大器••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••5第三章实验原理••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••7第四章电路分析•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••84.1仿真电路图••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••84.2两级放大电路静态工作点的测量•••••••••••••••••••••••••••••••••••••••••••••••••104.3两级电压放大倍数的测量•••••••••••••••••••••••••••••••••••••••••••••••••••••••••11第五章安装调试•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••145.1安装调试过程••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••145.2计算结果与分析•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••15第六章致谢••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••17第七章心得体会•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••172第一章概述所谓电子技术,是指“含有电子的、数据的、磁性的、光学的、电磁的、或者类似性能的相关技术”。电子技术可以分为模拟电子技术、数字电子技术两大部分。模拟电子技术说是整个电子技术的基础,在信号放大、功率放大、整流稳压、模拟量反馈、混频、调制解调电路领域具有无法替代的作用。例如高保真(Hi-Fi)的音箱系统、移动通讯领域的高频发射机等。与模拟电路相比,数字电路具有精度高、稳定性好、抗干扰能力强、程序软件控制等一系列优点。随着计算机科学与技术突飞猛进地发展,用数字电路进行信号处理的优势也更加突出。为了充分发挥数字电路在信号处理上的强大功能,我们可以先将模拟信号按比例转换成数字信号,然后送到数字电路进行处理,最后再将处理结果根据需要转换为相应的模拟信号输出。自20世纪70年代开始,这种用数字电路处理模拟信号的所谓“数字化”浪潮已经席卷了电子技术几乎所有的应用领域,如数字滤波器等。很有幸我们这学期学习了模电数电这门学科,并且是我们这个学期的重点课程,在上课和实验的过程中,渐渐的我喜欢上了它。每一节课我都认真学习,每次实验我都认真的去完成。但是做课程设计还是不太熟练,以前都是照着做,现在所有的都是自己做,真的很有难度。要想做出来一个好的东西,就要去图书馆和网上去找资料。3第二章知识扩展下面我们介绍几种常见的放大电路。低频电压放大器低频电压放大器是指工作频率在20赫~20千赫之间、输出要求有一定电压值而不要求很强的电流的放大器。(1)共发射极放大电路图1(a)是共发射极放大电路。C1是输入电容,C2是输出电容,三极管VT就是起放大作用的器件,RB是基极偏置电阻,RC是集电极负载电阻。1、3端是输入,2、3端是输出。3端是公共点,通常是接地的,也称“地”端。静态时的直流通路见图1(b),动态时交流通路见图1(c)。电路的特点是电压放大倍数从十几到一百多,输出电压的相位和输入电压是相反的,性能不够稳定,可用于一般场合。(2)分压式偏置共发射极放大电路图2比图1多用3个元件。基极电压是由RB1和RB2分压取得的,所以称为分压偏置。发射极中增加电阻RE和电容CE,CE称交流旁路电容,对交流是短路的;RE则有直流负反馈作用。所谓反馈是指把输出的变化通过某种方式送到输入端,作为输入的一部分。如果送回部分和原来的输入部分是相减的,就是负反馈。图中基极真正的输入电压是RB2上电压和RE上电压的差值,4所以是负反馈。由于采取了上面两个措施,使电路工作稳定性能提高,是应用最广的放大电路。(3)射极输出器图3(a)是一个射极输出器。它的输出电压是从射极输出的。图3(b)是它的交流通路图,可以看到它是共集电极放大电路。这个图中,晶体管真正的输入是Vi和Vo的差值,所以这是一个交流负反馈很深的电路。由于很深的负反馈,这个电路的特点是:电压放大倍数小于1而接近1,输出电压和输入电压同相,输入阻抗高输出阻抗低,失真小,频带宽,工作稳定。它经常被用作放大器的输入级、输出级或作阻抗匹配之用。(4)低频放大器的耦合一个放大器通常有好几级,级与级之间的联系就称为耦合。放大器的级间耦合方式有三种:①RC耦合,见图4(a)。优点是简单、成本低。但性能不是最佳。②变压器耦合,见图4(b)。优点是阻抗匹配好、输出功率和效率高,但变压器制作比较麻烦。③直接耦合,见图4(c)。优点是频带宽,可作直流放大器使用,但前后级工作有牵制,稳定性差,设计制作较麻烦。集成运算放大器5集成运算放大器是一种把多级直流放大器做在一个集成片上,只要在外部接少量元件就能完成各种功能的器件。因为它早期是用在模拟计算机中做加法器、乘法器用的,所以叫做运算放大器。它有十多个引脚,一般都用有3个端子的三角形符号表示,如图10。它有两个输入端、1个输出端,上面那个输入端叫做反相输入端,用“—”作标记;下面的叫同相输入端,用“+”作标记。集成运算放大器可以完成加、减、乘、除、微分、积分等多种模拟运算,也可以接成交流或直流放大器应用。在作放大器应用时有:(1)带调零的同相输出放大电路图11是带调零端的同相输出运放电路。引脚1、11、12是调零端,调整RP可使输出端(8)在静态时输出电压为零。9、6两脚分别接正、负电源。输入信号接到同相输入端(5),因此输出信号和输入信号同相。放大器负反馈经反馈电阻R2接到反相输入端(4)。同相输入接法的电压放大倍数总是大于1的。(2)反相输出运放电路也可以使输入信号从反相输入端接入,如图12。如对电路要求不高,可以不用调零,这时可以把3个调零端短路。6输入信号从耦合电容C1经R1接入反相输入端,而同相输入端通过电阻R3接地。反相输入接法的电压放大倍数可以大于1、等于1或小于1。(3)同相输出高输入阻抗运放电路图13中没有接入R1,相当于R1阻值无穷大,这时电路的电压放大倍数等于1,输入阻抗可达几百千欧。放大电路读图要点和举例放大电路是电子电路中变化较多和较复杂的电路。在拿到一张放大电路图时,首先要把它逐级分解开,然后一级一级分析弄懂它的原理,最后再全面综合。读图时要注意:①在逐级分析时要区分开主要元器件和辅助元器件。放大器中使用的辅助元器件很多,如偏置电路中的温度补偿元件,稳压稳流元器件,防止自激振荡的防振元件、去耦元件,保护电路中的保护元件等。②在分析中最主要和困难的是反馈的分析,要能找出反馈通路,判断反馈的极性和类型,特别是多级放大器,往往以后级将负反馈加到前级,因此更要细致分析。③一般低频放大器常用RC耦合方式;高频放大器则常常是和LC调谐电路有关的,或是用单调谐或是用双调谐电路,而且电路里使用的电容器容量一般也比较小。④注意晶体管和电源的极性,放大器中常常使用双电源,这是放大电路器。7第三章实验原理单级放大电路的电压放大倍数一般可达几十倍,然而,在实际中为了放大非常微弱的信号,这样大的放大倍数往往是不够的。为了达到更高的放大倍数,常常把若干个基本放大电路连接起来,组成所谓的多级放大电路。组成:1.差动放大电路是用两组相同的元器件,组成两个对称的电路,将这两个电路输出的差送至负载,从而使两个电路的零点漂移互相抵消。2.直接耦合是级与级连接方式中最简单的,就是将后级的输入与前级输出直接连接在一起,一个放大电路的输出端与另一个放大电路的输入端直接连接的耦合方式称为直接耦合。由于是直接连在一起,因此每级的静态工作点受其他放大级的影响与牵制,若前级静态工作点Q发生变化则会影响到后面各级的Q点,因此对电路的静态分析也比较复杂。另外直接耦合放大电路既能对交流信号进行放大,也能对缓慢变化的信号甚至于直流信号也能放大。反馈的定义:将放大器输出量(电压或电流)的一部分或全部通过一定方式的网络(称反馈网络)回馈送到输入回路,与输入信号串联或并联,从而影响电路性能的一种电路技术。1、电压放大倍数在多级放大电路中,由于各级之间是串联起来的,上一级的输出,就是下一级的输入,所以总的电压放大倍数为各级电压放大倍数的乘积。2、输入电阻和输出电阻一般说来,多级放大电路的输入电阻就是输入级的输入电阻,而输出电阻就是输出级的输出电阻。3、频率特性8在实际电路中,通常要求放大器能够放大一定频率范围的信号。我们把放大器的放大倍数和工作信号频率有关的特性称为频率特性。第四章电路分析通常放大电路的输入信号都是很弱的,一般为毫伏或微伏数量级,输入功率常在1mV以下。为了推动负载工作,因此要求把几个单级放大电路连接起来,使信号逐级得到放大,方可在输出获得必要的电压幅值或足够的功率。由几个单级放大电路连接起来的电路称为多级放大电路。在多级放大电路中,每两个单级放大电路之间的连接方式叫耦合;如耦合电路是采用电阻、电容进行耦合,则叫做“阻容耦合”。9阻容耦合交流放大电路是低频放大电路中应用得最多、最为常见的电路。本实验采用的是两级阻容耦合放大电路,如图所示。在晶体管V1的输出特性曲线中直流负载线与横轴的交点UCEQ1=VCC,与纵轴的交点(UCE=0时)集电极电流为1CQI311EECCCRRRV静态工作点Q1位于直流负载线的中部附近,由静态时的集电极电流ICQ1和集-射电压UCEQ1确定。当流过上下偏流电阻的电流足够大时,晶体管V1的基级偏压为2111RRVRUCCB晶体管V1的静态发射极电流为311311117.0EEBEEEBEQRRURRUBUI静态集电极电流近似等于发射极电流,即1111EQBQEQCQIIII晶体管V1的静态集电极电压为111CCQCCCQRIVU两级阻容耦合放大电路的总电压放大倍数为21uuuAAA其中,第一级放大电路的电压放大倍数为11111)1(EbeLuRrRA10晶体管V1的等效负载电阻为211iCLRRR可作为第一级放大电路的外接负载,第二级放大电路的输入电阻为])1(//[//222432EbeiRrRRR晶体管V1和V2的输入电阻分别为11126)1(300EQbeIr22226)1(300

1 / 18
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功