微生物与基因工程

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1第十章微生物与基因工程基因工程(geneticengineering)或重组DNA技术(recombinantDNAtechnology)是指对遗传信息的分子操作和施工,即把分离到的或合成的基因经过改造,插入载体中,导入宿主细胞内,使其扩增和表达,从而获得大量基因产物,或者令生物表现出新的性状。基因工程这个术语可以用来表示特定基因操作,也可泛指它所涉及的技术系统,其核心是构建重组体DNA的技术。因此,基因工程和重组DNA技术有时也就成为同义词。基因工程是在现代生物学、化学和化学工程学以及其他数理科学的基础上产生和发展起来的,并有赖于微生物学的理论和技术的发展和运用,微生物在基因工程的兴起和发展过程中起着不可替代的作用。基因工程的出现是本世纪生物科学具有划时代意义的巨大事件,它使得生物科学获得迅猛发展,并带动了生物技术产业的兴起。它的出现标志着人类已经能够按照自己意愿进行各种基因操作,大规模生产基因产物,并且去设计和创建新的基因、新的蛋白质和新的生物物种,这也是当今新技术革命的重要组成部分。第一节基因工程概述一、基因工程的发展历史基因工程是在本世纪70年代初开始出现的。三项关键技术的建立为基因工程奠定了基础,这三项技术是:DNA的特异切割、DNA的分子克隆和DNA的快速测序。早在50年代,阿尔伯(Arber)的实验室就已发现大肠杆菌能够限制侵染的噬菌体,60年代末进而证明大肠杆菌细胞内存在修饰–限制系统,即给宿主自身DNA打上甲基化标记并切割入侵的噬菌体DNA。1970年史密斯(Smith)等人从流感嗜血杆菌(Hemophilusinfluenzae)中分离出特异切割DNA的限制酶。次年,内森斯(Nathans)等人用该酶切割猴病毒SV40DNA,最先绘制出DNA的限制图谱(restrictionmap)。1973年史密斯和内森斯提出修饰–限制酶的命名法。限制性核酸内切酶可用以在特定位点切割DNA,限制酶的发现使分离基因成为可能。为表彰上述科学家在发现和使用限制酶中的功绩,1978年的诺贝尔医学奖被授予阿尔伯、内森斯和史密斯。1973年,科恩(Cohen)和博耶(Boyer)等将pSC101质粒作为载体与R质粒的四环素和卡那霉素的抗性基因相融合,并将重组体DNA转化大肠杆菌,首次实现了DNA的分子克隆。1975年桑格(Sanger)实验室建立了酶法快速测定DNA序列的技术。1977年吉尔伯特(Gilbert)实验室又建立了化学测定DNA序列的技术。分子克隆和测序方法的建立,使重组DNA技术系统得以产生。1980年诺贝尔化学奖被授予伯格、吉尔伯特和桑格,以肯定他们在发展DNA重组与测序技术中的贡献。1977年板仓(Itakura)和博耶用人工合成的生长激素释放抑制素(Somatostatin,SMT)基因构建表达载体,并在大肠杆菌细胞内表达成功,得到第一个基因工程的产品。1982年,在建立转基因植物和转基因动物的技术上均获得重大突破。借助土壤农杆菌Ti质粒可将外源基因导入双子叶植物细胞内并发生整合,从而使植株获得新的遗传性状。同年通过基因工程方法把大鼠生长激素基因注射到小鼠受精卵的雄核中,然后移植到母鼠子宫内,由此培育出巨型小鼠。仅仅10年时间,基因工程在实践中迅速成熟,日趋完善。二、基因工程的基本过程生物的遗传性状是由基因(即一段DNA分子序列)所编码的遗传信息决定的。基因工程操作首先要获得基因,才能在体外用酶进行“剪切”和“拼接”,然后插入由病毒、质粒或染色体DNA片段构建成的载体,并将重组体DNA转入微生物或动、植物细胞,使其复制(无性繁殖),由此获得基因克隆(clone,无性繁殖系的意思)。基因还可通过DNA聚合酶链式反应(PCR)在体外进行扩增,借助合成的寡核苷酸在体外对基因进行定位诱变和改造。克隆的基因需要进行鉴定或测序。控制适当的条件,使转入的基因在细胞内得到表达,即能产生出人们所需要的产品,或使生物体获得2新的性状。这种获得新功能的微生物称为“工程菌”,新类型的动、植物分别称为“工程动物”和“工程植物”,或“转基因动物”和“转基因植物”。基因工程操作过程大致可归纳为以下主要步骤:①分离或合成基因;②通过体外重组将基因插入载体;③将重组DNA导入细胞;④扩增克隆的基因;⑤筛选重组体克隆;⑥对克隆的基因进行鉴定或测序;⑦控制外源基因的表达;⑧得到基因产物或转基因动物、转基因植物。上述步骤可用图10-1来表示。图10-1基因工程基本操作过程示意图三、微生物学与基因工程的关系微生物和微生物学在基因工程的产生和发展中占据了十分重要的地位,可以说一切基因工程操作都离不开微生物。从以下六个方面可以说明:①基因工程所用克隆载体主要是用病毒、噬菌体和质粒改造而成;②基因工程所用千余种工具酶绝大多数是从微生物中分离纯化得到的;③微生物细胞是基因克隆的宿主,即使植物基因工程和动物基因工程也要先构建穿梭载体,使外源基因或重组体DNA在大肠杆菌中得到克隆并进行拼接和改造,才能再转移到植物和动物细胞中;④为大规模表达各种基因产物,从事商品化生产,通常都是将外源基因表达载体导入大肠杆菌或是酵母菌中以构建成工程菌,利用工厂发酵来实现的;⑤微生物的多样性,尤其是抗高温、高盐、高碱、低温等基因,为基因工程提供了极其丰富而独特的基因资源;⑥有关基因结构、性质和表达调控的理论主要也是来自对微生物的研究中取得的,或者是将动、植物基因转移到微生物中后进行研究而取得的,因此微生物学不仅为基因工程提供了操作技术,同时也提供了理论指导。第二节微生物与克隆载体外源DNA片段进行克隆,需要一个合适的载体,将其运送到细胞中并进行复制与扩增。这种以扩增外源DNA为目的载体,称为克隆载体(cloningvector)。作为克隆载体的基本要求是:(1)载体在细胞中必须能够进行独立自主地复制。因此载体应是一个独立的复制子(replicon),具有复制起始序列,可在细胞中进行有效扩增。(2)载体必须具有若干限制酶的单一切割位点,便于外源DNA的插入。并且由于这些酶切位点位于载体复制的非必需区,故插入适当大小外源DNA片段后载体仍然能够进行正常的复制。(3)载体必须具有可供选择的遗传标记,例如具有抗生素的抗性基因,便于对阳性克隆的鉴别和筛选。(4)载体DNA须易于生长和操作。3到目前为止,基因工程中使用的载体基本上均来自微生物,主要包括六大类:质粒载体;λ噬菌体载体;柯斯质粒载体;M13噬菌体载体;真核细胞的克隆载体;人工染色体等。一、质粒克隆载体1.质粒克隆载体的特性当前分子克隆中所用的克隆载体,绝大多数是利用细菌的质粒,经人工修饰改造而成。质粒作为克隆载体,具有十分有利的特性:(1)具有独立复制起点作为克隆载体的质粒,通常都含有一个复制起点,这是质粒在宿主细胞中进行扩增的必要条件。(2)具有较小的分子量质粒是染色体外DNA,通常由环形双链DNA构成,其分子大小约为1~200Kb。低分子量有利于DNA的分离和操作,但也限制其克隆外源DNA片段的大小,一般不超过15Kb。(3)具有较高拷贝数每个细胞可含有10~200个拷贝的松弛型复制质粒。当加入蛋白质合成抑制剂(如氯霉素等),还可大大增加细胞中质粒的拷贝数,每个细胞可含有高达数千个拷贝的质粒,使外源DNA得以大量扩增。(4)具有便于选择的标记某些质粒中存在着抗生素的抗生基因,便于对克隆基因的检测和筛选。(5)易于导入细胞质粒可通过转化或电穿孔等方法极易被导入细胞。(6)具有安全性作为载体的质粒不具有转移功能,防止带有外源DNA的重组质粒扩散至实验室外,以免造成危害。2.质粒pBR322的结构特点大肠杆菌质粒pBR322是基因工程中最常用和最具代表性的质粒(图10-2),它是由博利瓦(Bolivar)等人于1977年构建而成的,是一个典型的人工质粒载体。质粒pBR322是环状双链DNA分子,由4361bp组成。可插入外源DNA大小为5kb左右,外源DNA若超过10kb,质粒在复制时就会变得不稳定。它具有一个复制起点,是松弛型质粒,故细胞中具有较高的拷具数,每个细胞含有20~30个拷贝。当加入氯霉素扩增之后,每个细胞可含有1000~3000个拷贝,大大有利于重组质粒在细胞中的扩增。此外,pBR322还具有两种抗生素的抗性基因,一个是四环素抗性基因(Tetr)另一个是氨苄青霉素抗性基因(Ampr)。已知有24种主要限制酶在pBR322上都只有一个切点,其中有7种限制酶(EcoRV、NheI、BamHI、SphI、SalI、XmaIII、NruI)的切点位于四环素抗性基因之内,还有3种限制酶(ScaI、PvuI和PstI)的切点位于氨苄青霉素抗性基因之内。外源DNA片段插入这些位点之中任一位点时,将导致相应的抗性基因的失活。这种因外源DNA的插入而导致基因失活的现象,称为插入失活(insertionalinactivation)。图10-2质粒pBR322结构图插入失活常被用于检测含有外源DNA的重组体(图10-3),例如若在质粒pBR322的BamHI的位点插入外源DNA,然后转化大肠杆菌(Tets、Amps)。含有重组质粒(即带有外源DNA的质粒)的宿主细胞失去对四环素的抗性,所以不能在含有四环素培养基的平板上生长,但仍能在含有氨苄青霉素培养基的平板上生长。而那些含有不带外源基因的质粒的宿主细胞,则可以在含有四环素或氨苄青霉素培养基的平板上生长,这样就很容易筛选到含有目的基因的细菌,从而淘汰不含目的基因的细菌。4图10-3插入失活示意图3.其它质粒载体现在已构建许多新的质粒载体(如pUC系列和pGEM系列的质粒载体),它们具有更多有用的特点并且使用起来更方便。这些载体的优点之一,在质粒载体上含有一个人工构建的多接头位点(polylinker)或多克隆位点(multiplecloningsite),这是一个带有不同限制酶单一识别位点的短的DNA片段,外源基因可随意插入任何一个切点。同时又由于多克隆位点常位于一个基因的编码区之中,因此,基因的插入失活极易被检测到。除大肠杆菌质粒外,枯草芽孢杆菌质粒也可作为质粒载体之用。此外,酿酒酵母(Saccharomycescerevisiae)的2mm质粒常作为酵母细胞外源基因的克隆或表达载体。为了便于基因工程工作,人们先后构建了一系列不同类型的穿梭质粒载体(shuttleplasmidvector)。这是一类同时含有两种细胞的复制起点(特别是同时含有原核与真核生物的复制起点),能在两种生物细胞中进行复制的质粒载体。其中最为常见和被广泛应用的是大肠杆菌-酿酒酵母穿梭质粒载体,这种质粒同时含有大肠杆菌和酿酒酵母的复制起点,故既可在大肠杆菌细胞中复制又可在酵母细胞中进行复制。此外还有其他穿梭质粒载体系统。二、λ噬菌体克隆载体λ噬菌体是基因工程中一类很有价值的克隆载体,具有很多优点:①它的分子遗传学背景十分清楚。②λ噬菌体载体的容量较大。一般质粒载体只能容纳10多个kb。而λ噬菌体载体却能容纳大约23kb的外源DNA片段。③具有较高的感染效率。其感染宿主细胞的效率几乎可达100%,而质粒DNA的转化率却只有0.1%。以上优点为克隆较大片段的外源DNA提供了有利条件,并可大大增加构建基因库的效率。1.λ噬菌体载体的构建野生型λ噬菌体DNA不适于作为克隆载体,因为它的DNA分子很大,基因组结构复杂,限制酶有很多切点,并且这些切点多数位于必需基因之中等等。为了避免上述问题,需经一系列改造。构建λ噬菌体克隆载体的基本原则是:①删除基因组中非必需区,使基因组变小,有利于克隆大的DNA片段。②除去多余的限制位点。现已构建了各种各样的λ载体。这些载体可分为两类:一类称为插入型载体(insertvector)其限制酶位点可用于外源DNA的插入;另一类称为取代型载体(replacementvector)具有成对限制酶位点,外源DNA可取代两个限制位点上的DNA区段。重组DNA与包装蛋白混合,可在体外包装成有感染力的重组噬菌颗粒。虽然λ噬菌体载体是一类极为有用的克隆载体,但是由于λ噬菌体头部组装时容纳DNA

1 / 24
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功