2010年四川大学附属中学小升初数学试题一、填空。1.一个数由5个十和4个十分之一组成,这个数写作()。2.9.08千米=()千米()米3.0.8的倒数是()。4.京华中学有教师120人,老、中、青教师的人数比是1:3:4,有中年教师()人。5.2:5==()%。6.在比例中,两个外项的积一定,两个两内项成()比例。7.当x=0.5时,4x+3的值是()。当x=()时,4x+3=7。8.一个圆锥体底面积周长是12.56厘米,体积是37.68立方厘米,圆锥体的底面积是()平方厘米,高是()厘米。9.100克的糖溶在水里,制成的糖水含糠率为12.56。如果再加200克水,这时糖与糖水最简单的整数比是()。二、判断下面各题,正确的在()里画“√”,错误的画“×”。1.除2以外,所有的质数都是奇数。()2.分母是一位数,分子是质数的最小的最简分数是。()3.钝角三角形的内角和大于锐角三角形的内角和。()三、选择正确答案的序号填在()里。1.甲乙两地实际距离是320千米,在一幅地图上量得的距离是4厘米,这幅地图的比例尺是()。(1)1:80(2)1:8000(3)1:80000002.比较两池的拥挤程度,结果是()。(1)甲池拥挤(2)乙池拥挤(3)两池一样四、用简便方法计算下面各题。(写简算过程)1.16.4+3.5+83.6+166.52.×38.3+1.7×五、1.的除以的20与18的差,商是多少?2.一个数减少它的15%后是5.1,这个数是多少?(列方程解)七、求下面组合图形的体积。(单位:厘米)六、应用题。1.在第27届奥运会上,中国运动员获牌情况统计如下:金牌银牌铜牌28块16块15块(1)金牌数量占奖牌总数的百分之几?(2)铜牌数量是银行数量的百分之几?(3)金牌数量比铜牌数百分之几?2.一辆汽车从东城开往西城,每小时行42千米,5小时到达乙城;返回时用了4小时,平均每小时行多少千米?(用比例解)3.埃及金字塔现在高度大约140米,比建成时低了建成时大约高多少米?4.甲、乙两队合修一条水渠需要15天,甲、乙两队的工作效率比是2:3,如果乙队单独修这条水渠需要多少天?5.桌子的价钱是椅子的3.2倍,买5把椅子和4张桌子共花2670元,每把椅子的单价是多少元?成都树德中学2010年小升初数学考试试题一、填空。1.一个数由5个十和4个十分之一组成,这个数写作()。2.9.08千米=()千米()米3.0.8的倒数是()。4.京华中学有教师120人,老、中、青教师的人数比是1:3:4,有中年教师()人。5.2:5==()%。6.在比例中,两个外项的积一定,两个两内项成()比例。7.当x=0.5时,4x+3的值是()。当x=()时,4x+3=7。8.一个圆锥体底面积周长是12.56厘米,体积是37.68立方厘米,圆锥体的底面积是()平方厘米,高是()厘米。9.100克的糖溶在水里,制成的糖水含糠率为12.56。如果再加200克水,这时糖与糖水最简单的整数比是()。10.如图,长方形的面积是20平方厘米,如果在这个长方形中画一人最大半圆,这个半圆珠笔的面积是()平方厘米。二、判断下面各题,正确的在()里画“√”,错误的画“×”。1.除2以外,所有的质数都是奇数。()2.分母是一位数,分子是质数的最小的最简分数是。()3.钝角三角形的内角和大于税角三角形的内角和。()三、选择正确答案的序号填在()里。1.甲乙两地实际距离是320千米,在一幅地图上量得的距离是4厘米,这幅地图的比例尺是()。(1)1:80(2)1:8000(3)1:80000002.比较两池的拥挤程度,结果是()。(1)甲池拥挤(2)乙池拥抗挤(3)两池一样四、用简便方法计算下面各题。(写简算过程)1.16.4+3.5+83.6+166.52.×38.3+1.7×五、脱式计算下面各题。1.498+9870÷352.420.5-294÷2.8×2.13.4.÷5.÷六、列式计算。1.的除以的20与18的差,商是多少?2.一个数减少它的15%后是5.1,这个数是多少?(列方程解)七、求下面组合图形的体积。(单位:厘米)八、应用题。1.在第27届奥运会上,中国运动员获牌情况统计如下:金牌银牌铜牌28块16块15块(1)金牌数量占奖牌总数的百分之几?(2)铜牌数量是银行数量的百分之几?(3)金牌数量比铜牌数百分之几?2.一辆汽车从东城开往西城,每小时行42千米,5小时到达乙城;返回时用了4小时,平均每小时行多少千米?(用比例解)3.埃及金字塔现在高度大约140米,比建成时低了建成时大约高多少米?4.甲、乙两队合修一条水渠需要15天,甲、乙两队的工作效率比是2:3,如果乙队单独修这条水渠需要多少天?5.桌子的价钱是椅子的3.2倍,买5把椅子和4张桌子共花2670元,每把椅子的单价是多少元?成都名校小升初数学试题汇总1(附答案)一、填空题:2.将一张正方形的纸如图按竖直中线对折,再将对折纸从它的竖直中线(用虚线表示)处剪开,得到三个矩形纸片:一个大的和两个小的,则一个小矩形的周长与大矩形的周长之比为______.么回来比去时少用______小时.4.7点______分的时候,分针落后时针100度.5.在乘法3145×92653=29139□685中,积的一个数字看不清楚,其他数字都正确,这个看不清的数字是______.7.汽车上有男乘客45人,若女乘客人数减少10%,恰好与男乘客人8.在一个停车场,共有24辆车,其中汽车是4个轮子,摩托车是3个轮子,这些车共有86个轮子,那么三轮摩托车有______辆.9.甲、乙两人轮流在黑板上写不超过10的自然数,规定每人每次只能写一个数,并禁止写黑板上数的约数,最后不能写者败.若甲先写,并欲胜,则甲的写法是______.10.有6个学生都面向南站成一行,每次只能有5个学生向后转,则最少要做______次能使6个学生都面向北.二、解答题:1.图中,每个小正方形的面积均为1个面积单位,共9个面积单位,则图中阴影部分面积为多少个面积单位?2.设n是一个四位数,它的9倍恰好是其反序数(例如:123的反序数是321),则n是多少?3.自然数如下表的规则排列:求:(1)上起第10行,左起第13列的数;(2)数127应排在上起第几行,左起第几列?4.任意k个自然数,从中是否能找出若干个数(也可以是一个,也可以是多个),使得找出的这些数之和可以被k整除?说明理由.试题答案,仅供参考:一、填空题:1.(1)2.(5∶6)周长的比为5∶6.4(20)5(3)根据弃九法计算.3145的弃九数是4,92653的弃九数是7,积的弃九数是1,29139□685,已知8个数的弃九数是7,要使积的弃九数为1,空格内应填3.6.(1/3)7.(30)8.(10)设24辆全是汽车,其轮子数是24×4=96(个),但实际相差96-86=10(个),故(4×24-86)÷(4-3)=10(辆).9.甲先把(4,5),(7,9),(8,10)分组,先写出6,则乙只能写4,5,7,8,9,10中一个,乙写任何组中一个,甲则写另一个.10.(6次)由6个学生向后转的总次数能被每次向后转的总次数整除,可知,6个学生向后转的总次数是5和6的公倍数,即30,60,90,…据题意要求6个学生向后转的总次数是30次,所以至少要做30÷5=6(次).二、解答题:1.(4)由图可知空白部分的面积是规则的,左下角与右上角两空白部分面积和为3个单位,右下为2个单位面积,故阴影:9-3-2=4.2.(1089)9以后,没有向千位进位,从而可知b=0或1,经检验,当b=0时c=8,满足等式;当b=1时,算式无法成立.故所求四位数为1089.3.本题考察学生“观察—归纳—猜想”的能力.此表排列特点:①第一列的每一个数都是完全平方数,并且恰好等于所在行数的平方;②第一行第n个数是(n-1)2+1,②第n行中,以第一个数至第n个数依次递减1;④从第2列起该列中从第一个数至第n个数依次递增1.由此(1)〔(13-1)2+1〕+9=154;(2)127=112+6=〔(12-1)2+1〕+5,即左起12列,上起第6行位置.4.可以先从两个自然数入手,有偶数,可被2整除,结论成立;当其中无偶数,奇数之和是偶数可被2整除.再推到3个自然数,当其中有3的倍数,选这个数即可;当无3的倍数,若这3个数被3除的余数相等,那么这3个数之和可被3整除,若余数不同,取余1和余2的各一个数和能被3整除,类似断定5个,6个,…,整数成立.利用结论与若干个数之和有关,构造k个和.设k个数是a1,a2,…,ak,考虑,b1,b2,b3,…bk其中b1=a1,b2=a1+a2,…,bk=a1+a2+a3+…+ak,考虑b1,b2,…,bk被k除后各自的余数,共有b;能被k整除,问题解决.若任一个数被k除余数都不是0,那么至多有余1,2,…,余k-1,所以至少有两个数,它们被k除后余数相同.这时它们的差被k整除,即a1,a2…,ak中存在若干数,它们的和被k整除.成都名校小升初数学试题汇总2(附答案)一、填空题:1.29×12+29×13+29×25+29×10=______.2.2,4,10,10四个数,用四则运算来组成一个算式,使结果等于24.______.______页.4.如图所示为一个棱长6厘米的正方体,从正方体的底面向内挖去一个最大的圆锥体,则剩下的体积是原正方体的百分之______(保留一位小数).5.某校五年级(共3个班)的学生排队,每排3人、5人或7人,最后一排都只有2人.这个学校五年级有______名学生.6.掷两粒骰子,出现点数和为7、为8的可能性大的是______.7.老妇提篮卖蛋.第一次卖了全部的一半又半个,第二次卖了余下的一半又半个,第三次卖了第二次余下的一半又半个,第四次卖了第三次余下的一半又半个.这时,全部鸡蛋都卖完了.老妇篮中原有鸡蛋______个.8.一组自行车运动员在一条不宽的道路上作赛前训练,他们以每小时35千米的速度向前行驶.突然运动员甲离开小组,以每小时45千米的速度向前行驶10千米,然后转回来,以同样的速度行驶,重新和小组汇合,运动员甲从离开小组到重新和小组汇合这段时间是______.9.一对成熟的兔子每月繁殖一对小兔子,而每对小兔子一个月后就变成一对成熟的兔子.那么,从一对刚出生的兔子开始,一年后可变成______对兔子.10.有一个10级的楼梯,某人每次能登上1级或2级,现在他要从地面登上第10级,有______种不同的方式.二、解答题:1.甲、乙二人步行的速度相等,骑自行车的速度也相等,他们都要由A处到B处.甲计划骑自行车和步行所经过的路程相等;乙计划骑自行车和步行的时间相等.谁先到达目的地?共有多少个?3.某商店同时出售两件商品,售价都是600元,一件是正品,可赚20%;另一件是处理品,要赔20%,以这两件商品而言,是赚,还是赔?4.有一路电车起点站和终点站分别是甲站和乙站.每隔5分钟有一辆电车从甲站出发开往乙站,全程要走15分钟.有一个人从乙站出发沿电车路线骑车前往甲站.他出发时,恰有一辆电车到达乙站.在路上遇到了10辆迎面开来的电车.当到达甲站时,恰又有一辆电车从甲站开出,问他从乙站到甲站用了多少分钟?以下小升初数学试题答案,仅供参考:一、填空题:1.(1740)29×(12+13+25+10)=29×60=17402.(2+4÷10)×103.(200页)4.(73.8%)(cm3),剩下体积占正方体的:(216-56.52)÷216≈0.738≈73.5.(107)3×5×7+2=105+2=1076.(7的可能性大)出现和等于7的情况有6种:1与6,2与5.3与4,4与3,5与2,6与1;出现和为8的情况5种:2和6,3与5,4与4,5与3,6与2.7.(15)从图上看出,在这段时间内,运动员甲和运动员队分别以每小时45千米9.(233)从第二个月起,每个月兔子的对数都等于相邻的前两个月的兔子对数的和.即1,1,2,3,5,8,13,21,34,55,89,144,233,