工业机器人

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

摘要:工业机器人在完成给定的作业任务之前,应该规定它的操作顺序、行动步骤和作业进程。所谓轨迹,是指操作臂在运动过程中的位移、速度和加速度。而轨迹规划是根据作业任务的要求,计算出预期的运动轨迹。机器人轨迹泛指工业机器人在运动过程中的运动轨迹,即运动点的位移、速度和加速度。机器人在作业空间要完成给定的任务,其手部运动必须按一定的轨迹(trajectory)进行。轨迹的生成一般是先给定轨迹上的若干个点,将其经运动学反解映射到关节空间,对关节空间中的相应点建立运动方程,然后按这些运动方程对关节进行插值,从而实现作业空间的运动要求,这一过程通常称为轨迹规划。而轨迹规划是根据作业任务的要求,计算出预期的运动轨迹。首先对工业机器人的任务、运动路径和轨迹进行描述。轨迹规划器(如下图所示)可使编程手续简化,只要求用户输入有关路径和轨迹的若干约束和简单描述,而复杂的细节问题则由规划器解决。例如,用户只需给出手部的目标位姿,让规划器确定到达该目标的路径点、持续时间、运动速度等轨迹参数。并且,在计算机内部描述所要求的轨迹,即选择习惯规定及合理的软件数据结构。最后,对内部描述的轨迹,实时计算工业机器人运动的位移、速度和加速度,生成运动轨迹。每一轨迹点的计算时间要与轨迹更新速合拍的。正文:一,工业机器人的轨迹规划编辑1,常见的工业机器人作业有两种:①点位作业需要描述它的起始状态和目标状态,即工具坐标系的起始值、目标值。在此,用“点”这个词表示工具坐标系的位置和姿态(简称位姿),例如起始点和目标点等。②连续路径作业或者称为轮廓运动对于另外一些作业,如弧焊和曲面加工等,不仅要规定操作臂的起始点和终止点,而且要指明两点之间的若干中间点(称路径点),必须沿特定的路径运动(路径约束)。在规划机器人的运动时,还需要弄清楚在其路径上是否存在障碍物(障碍约束)。路径约束和障碍约束的组合将机器人的规划与控制方式划分为4类。2,操作臂最常用的轨迹规划方法有两种:第一种是要求对于选定的轨迹结点(插值点)上的位姿、速度和加速度给出一组显式约束(例如连续性和光滑程度等),轨迹规划器从一类函数(例如n次多项式)选取参数化轨迹,对结点进行插值,并满足约束条件。第二种方法要求用户给出运动路径的解析式,如操作空间中的直线路径,轨迹规划器在关节空间或操作空间中确定一条轨迹来逼近预定的路径。在第一种方法中,约束的设定和轨迹规划均在关节空间中进行。由于对操作臂手部(直角坐标形位)没有施加任何约束,用户很难弄清手部的实际路径,因此可能会发生与障碍物相碰。第二种方法的路径约束是在操作空间中给定的,而关节驱动器是在关节空间中受控的。因此,为了得到与给定路径十分接近的轨迹,首先必须采用某种函数逼近的方法将直角坐标路径约束转化为关节坐标路径约束,然后确定满足关节路径约束的参数化路径。轨迹规划既可在关节空间中进行,也可在直角空间中进行,但是所规划的轨迹函数都必须连续和平滑,使操作臂的运动平稳。在关节空间中进行规划时,是将关节变量表示成时间的函数,并规划它的一阶和二阶时间导数;在直角空间进行规划是指将手部位姿、速度和加速度表示为时间的函数。而相应的关节位移、速度和加速度由手部的信息导出。通常通过运动学反解得出关节位移,用逆雅可比求出关节速度,用逆雅可比及其导数求解关节加速度。用户根据作业任务给出各个路径结点后,规划器的任务包含:解变换方程、进行运动学反解和插值运算等;在关节空间进行规划时,大量工作是对关节变量的插值运算。3、轨迹的生成方式运动轨迹的描述或生成有以下几种方式:(1)示教-再现运动。这种运动由人手把手示教机器人,定时记录各关节变量,得到沿路径运动时各关节的位移时间函数q(t);再现时,按内存中记录的各点的值产生序列动作。(2)关节空间运动。这种运动直接在关节空间里进行。由于动力学参数及其极限值直接在关节空间里描述,所以用这种方式求最短时间运动很方便。(3)空间直线运动。这是一种直角空间里的运动,它便于描述空间操作,计算量小,适宜简单的作业。(4)空间曲线运动。这是一种在描述空间中用明确的函数表达的运动,如圆周运动、螺旋运动等。二,工业机器人的轨迹插补关节轨迹的插值:为了求得在关节空间形成所要求的轨迹,首先运用运动学反解将路径点转换成关节矢量角度值,然后对每个关节拟合一个光滑函数,使之从起始点开始,依次通过所有路径点,最后到达目标点。对于每一段路径,各个关节运动时间均相同,这样保证所有关节同时到达路径点和终止点,从而得到工具坐标系应有的位置和姿态。但是,尽管每个关节在同一段路径中的运动时间相同,各个关节函数之间却是相互独立的。总之,关节空间法是以关节角度的函数来描述机器人的轨迹的,关节空间法不必在直角坐标系中描述两个路径点之间的路径形状,计算简单,容易。再者,由于关节空间与直角坐标空间之间不是连续的对应关系,因而不回发生机构的奇异性问题。在关节空间中进行轨迹规划,需要给定机器人在起始点、终止点手臂的形位。对关节进行插值时,应满足一系列约束条件。在满足所有约束条件下,可以选取不同类型的关节插值函数,生成不同的轨迹。①直线插补直线插补和圆弧插补是机器人系统中的基本插补算法。对于非直线和圆弧轨迹,可以采用直线或圆弧逼近,以实现这些轨迹。空间直线插补是在已知该直线始末两点的位置和姿态的条件下,求各轨迹中间点(插补点)的位置和姿态。由于在大多数情况下,机器人沿直线运动时其姿态不变,所以无姿态插补,即保持第一个示教点时的姿态。②圆弧插补圆弧插补分为平面圆弧插补和空间圆弧插补。平面圆弧是指圆弧平面与基坐标系的三大平面之一重合;空间圆弧是指三维空间任一平面内的圆弧,此为空间一般平面的圆弧。空间圆弧插补可分三步来处理:(1)把三维问题转化成二维,找出圆弧所在平面。(2)利用二维平面插补算法求出插补点坐标。(3)把该点的坐标值转变为基础坐标系下的值③定时插补由于关节型机器人的机械结构大多属于开链式,刚度不高,ts一般不超过25ms,这样就产生了ts的上限值。当然ts越小越好,但它的下限值受到计算量限制,即对于机器人的控制,计算机要在ts时间里完成一次插补运算和一次逆向运动学计算。对于目前的大多数机器人控制器,完成这样一次计算约需几毫秒。这样产生了ts的下限值。当然,应当选择ts接近或等于它的下限值,这样可保证较高的轨迹精度和平滑的运动过程。④其他插补方法其他插补方法包括:定距插补、关节空间插补等。小结:随着工业化的实现,信息化的到来,我们开始进入知识经济的新时代。创新是这个时代的源动力。文化的创新、观念的创新、科技的创新、体制的创新改变着我们的今天,并将改造我们的明天。新旧文化、新旧思想的撞击、竞争,不同学科、不同技术的交叉、渗透,必将迸发出新的精神火花,产生新的发现、发明和物质力量。机器人技术就是在这样的规律和环境中诞生和发展的。科技创新带给社会与人类的利益远远超过它的危险。机器人的发展史已经证明了这一点。机器人的应用领域不断扩大,从工业走向农业、服务业:从产业走进医院、家庭;从陆地潜入水下、飞往空间;……机器人展示出它们的能力与魅力,同时也表示了它们与人的友好与合作。工业机器人的不断应用使得工业机器人的轨迹规划越来越重要。因此,对于机器人轨迹优化设计我们仍需进一步研究,其实际意义是将会增加社会经济效益,而轨迹优化设计的智能化程度的提高将会使人类更有效的探索未知世界,从而实现人类的美好梦想和愿望。然而本文就对工业机器人的轨迹做了简单的介绍,任然有诸多的不足和需要进一步研究的地方。

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功