第1页共2页(工程力学)华东理工大学网络教育学院《工程力学》练习B试卷满分100分。考试时间120分钟。一、判断题(每题2分,共20分)1、如果两个不同力系各自作用于同一刚体所产生的运动效应相同,则此二力系等效。()2、力系平衡的充分和必要条件是力系的主矢和对于任一点的主矩同时等于零。()3、力F作用线与轴y相平行,平行距离为h,则F对y轴之矩my(F)的大小为Fh。()4、主应力就是通过一点所有斜截面上正应力的极值,或者说是剪应力为零的面上的正应力。()5、梁弯曲时最大正应力发生在距中性轴最远的位置。()6、工程结构的构件中,存在真正的刚体,但绝大多数是可变形的弹性体。()7、要使物体保持运动,主动力必须始终大于最大静摩擦力。()8、在梁的刚度条件中许用挠度[w]和许用转角[θ]也和强度条件中许用应力[σ]一样,主要由材料的力学性能决定。()9、圆轴扭转时,其横截面上任意点处的剪应力与该点至截面中心之间的距离成正比。()10、杆件受轴向力作用时产生轴向拉、压变形,在弹性范围内,横向的应变为零。()二、单项选择题(每题3分,共30分)1、两根细长杆,直径、约束均相同,但材料不同,且E1=2E2,则两杆临界应力的关系为()。(A)12()()crcr(B)12()2()crcr(C)21()()2crcr(D)12()3()crcr2、关于力的移动,正确的是:()(A)作用于刚体上的力可以平移到任意点,而不改变它对刚体的作用效应(B)作用于刚体上的力可以平移到任意点,而不改变它对刚体的作用效应,但是平移后必须附加一个特定的力偶(C)力向一点平移,得到与之等效的一个力(D)力向一点平移,得到与之等效的一个力偶3、在平板平面(y-z平面)内作用着任意平面力系,要使平板保持平衡,则应保证满足的平衡方程应是()(A)0,()0,()0yzXmFmF(B)0,0,()0zXYmF(C)0,0,()0xYZmF(D)0,0,()0yXZmF4、脆性材料与塑性材料相比,其拉伸力学性能最大的特点是()(A)强度低,对应力集中不敏感(B)相同拉力作用下变形小(C)断裂前几乎没有塑性变形(D)应力-应变关系严格遵循胡克定律5、光滑面对物体的约束力作用在接触面处,其合力的方向沿接触面的公法线()。(A)指向该物体,为压力(B)指向该物体,为拉力(C)背离该物体,为拉力(D)背离该物体,为压力6、不可能发生屈曲的杆件包括()(A)细长杆(B)中长杆(C)粗短杆(D)以上三种7、材料不同的两根受扭圆轴,其直径和长度均相同,在扭矩相同的情况下,它们的最大剪应力之间和扭转角之间的关系有四种答案,正确的是()(A)1212,(B)1212,(C)1212,(D)1212,8、拉杆的应力公式/NFA的应用条件是()(A)应力在比例极限内(B)外力合力作用线必须沿着杆的轴线(C)应力在屈服极限内(D)杆件必须为圆形截面杆m2F3F1Ozyxm1PF2m2F3F1Ozyxm1PF2第2页共2页(工程力学)9、如图所示的一等截面直杆,在外力F的作用下,()(A)截面a的轴力最大(B)截面b的轴力最大(C)截面c的轴力最大(D)a、b、c三个截面的轴力一样大10、如下图所示结构,铰链连接杆件,其中AD杆发生的变形为()(A)弯曲变形(B)压缩变形(C)弯曲与压缩的组合变形(D)弯曲与拉伸的组合变形三、多选题(每题5分,共30分)1、对力的描述正确的是()(A)当力作用在刚体上时,力可以沿着其作用线滑移,而不改变力对刚体的作用效应(B)当力作用在刚体上时,若力沿着其作用线滑移,则会改变力对刚体的作用效应(C)当力作用在变形体上时,力可以沿着其作用线滑移,而不改变力对变形体的作用效应(D)当力作用在变形体上时,力不可以沿着其作用线滑移,也不能绕着作用点转动2、属于刚性约束的约束类型有()(A)钢缆(B)铰链(C)轴承(D)滚轴3、圆截面杆扭转时,应用平衡的方法,可以得到以下结论()(A)横截面上各点处的剪切变形相同(B)横截面上周边各点的剪应力沿着圆周切线方向(C)横截面上周边各点的剪应力大小相等(D)横截面上周边各点的剪应力大小不等4、提高细长压杆承载能力有如下方法,正确的是()(A)减小杆长(B)增加惯性矩(C)增加支撑的刚性(D)选用弹性模量大的材料5、对于杆件的弯曲变形,其约束条件是指()(A)在固定铰支座和滚轴支座处,挠度为零(B)在固定铰支座和滚轴支座处,转角为零(C)在固定端处,挠度为零(D)在固定端处,转角为零四、计算分析题(共30分)1、图示压路机的碾子可以在推力或拉力的作用下滚过100mm高的台阶。假定力F都是沿着杆AB的方向,杆与水平面的夹角为30º,碾子重量为250N,试求越过台阶所需要的力F的大小。(10分)2、T为圆杆横截面上的扭矩,试画出如图所示截面上与T对应的切应力分布图。(10分)3、具有中间铰链的梁受力如图所示。为确定挠度曲线的大致形状,分析说明需要分几段建立微分方程,确定积分常数的条件是什么?(10分)F30º100500BT(a)T(b)EIllBAFPCDlcabFPDABCF