工程材料学期论文超导材料

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

TermPaper学期论文工程材料学期论文超导材料摘要:人类的发展是一个开发和运用新材料的过程,随着上个世纪超导现象被发现以来超导现象一直为人所关注。超导是金属或合金在较低温度下电阻变为零的性质。超导材料是当代材料科学领域一个十分活跃的重要前沿,其发展将推动功能材料科学的深入发展。关于超导材料的研究也是屡见不鲜,但是如何才能提高材料的临界超导温度,如何把超导材料产业化和生活化都是现在面临的重大问题。超导材料具有广阔的应用前景。在电力、通信、国防、医疗等方面的发展急需利用超导技术解决现有的关键技术问题;在国防工业方面,由于超导技术不可代替的特殊性和优越性,将在扫雷艇、超导电机、电磁武器、传感器、舰船用防弹及导航用高精度超导陀螺仪等领域被广泛应用。所以提高临界转变温度、临界电流密度和改良其加工性能,制造出理想的更低价格的新一代超导材料就成为超导的发展趋势。在提高临界温度的同时,人们在努力探索新型超导材料。这就要求我们综合考虑超导材料的组成成分、制备工艺以改善它的性能,逐步提高材料的临界温度,使材料更具有实用意义。高温超导材料经过近20年的研发,已经初步进入了大规模实际应用和产业化。随着超导材料临界温度的提高和材料加工技术的发展,它将会在许多高科技领域获得重要应用。本文通过对各种文献的查找与总结,总的概括了超导体的研究发展历史与应用。从超导体材料的概述到分类,以及超导体的优越的特性,阐述了超导体的特殊性能和广阔的发展前景。关键词:超导材料应用发展前景临界温度高温超导一、超导材料的简要介绍超导材料是在低温条件下能出现超导电性的物质。超导材料最独特的性能是电能在输送过程中几乎不会损失。超导材料的发展经历了从低温到高温的过程,经过无数科学家的努力,超导材料的研究已经取得了巨大的发展。近年来,随着材料科学的发展,超导材料的性能不断优化,实现超导的临界温度也越来越高。高温超导材料的制备工艺也得到了长足的发展,一些制备高温超导材料的材料陆续被科学家发现。现在,超导材料的研究主要集中在超导输电线缆,超导变压器等电力系统方面,还有,利用超导材料可以形成强磁场,是超导材料在磁悬浮列车的研究上有了用武之地,另外,超导材料在医学,生物学领域也取得了很大的成就。以NbTi、Nb3Sn为代表的实用超导材料已实现了商品化,在核磁共振人体成像、超导磁体及大型加速器磁体等多个领域获得了应用;SQUID作为超导体弱电应用的典范已在微弱电磁信号测量方面起到了重要作用,其灵敏度是其它任何非超导的装置无法达到的。但是,由于常规低温超导体的临界温度太低,必须在昂贵复杂的液氦(4.2K)系统中使用,因而严重地限制了低温超导应用的发展。1973年,人们发现了超导合金――铌锗合金,其临界超导温度为23.2K,该记录保持了13年。1986年,设在瑞士苏黎世的美国IBM公司的研究中心报道了一种氧化物(镧-钡-铜-氧)具有35K的高温超导性,打破了传统“氧化物陶瓷是绝缘体”的观念,引起世界科学界的轰动。1986年底,美国贝尔实验室研究的氧化物超导材料,其临界超导温度达到40K,液氢的“温度壁垒”(40K)被跨越。1987年2月,美国华裔科学家朱经武和中国科学家赵忠贤相继在钇-钡-铜-氧系材料上把临界超导温度提高到90K以上,液氮的禁区(77K)也奇迹般地被突破了。1987年底,铊-钡-钙-铜-氧系材料又把临界超导温度的记录提高到125K。高温氧化物超导体的出现,突破了温度壁垒,把超导应用温度从液氦(4.2K)提高到液氮(77K)温区。同液氦相比,液氮是一种非常经济的冷媒,并且具有较高的热容量,给工程应用带来了极大的方便。另外,高温超导体都具有相当高的上临界场,能够用来产生20T以上的强磁场,这正好克服了常规低温超导材料的不足之处。正因为这些由本征特性Tc、Hc2所带来的在经济和技术上的巨大潜在能力,吸引了大量的科学工作者采用最先进的技术装备,对高Tc超导机制、材料的物理特性、化学性质、合成工艺及显微组织进行了广泛和深入的研究。高温氧化物超导体是非常复杂的多元体系,在研究过程中遇到了涉及多种领域的重要问题,这些领域包括凝聚态物理、晶体化学、工艺技术及微结构分析等。一些材料科学研究领域最新的技术和手段,如非晶技术、纳米粉技术、磁光技术、隧道显微技术及场离子显微技术等都被用来研究高温超导体,其中许多研究工作都涉及了材料科学的前沿问题。高温超导材料的研究工作已在单晶、薄膜、体材料、线材和应用等方面取得了重要进展。高温超导材料的不断问世,为超导材料从实验室走向应用铺平了道路。超导材料的研究将会努力向实用化发展,一旦室温超导体达到实用化、工业化,将对现代文明社会中的科学技术产生深刻的影响。二、超导材料的分类超导材料按其化学成分可分为超导元素、超导合金、超导化合物和超导陶瓷。1、超导元素:在常压下有28种元素具超导电性,其中铌(Nb)的Tc最高,为9.26K。电工中实际应用的主要是铌和铅(Pb,Tc=7.201K),已用于制造超导交流电力电缆、高Q值谐振腔等。2、超导合金:超导元素加入某些其他元素作合金成分,可以使超导材料的全部性能提高。如最先应用的铌锆合金(Nb-75Zr),其Tc为10.8K,Hc为8.7特。继后发展了铌钛合金,虽然Tc稍低了些,但Hc高得多,在给定磁场能承载更大电流。其性能是Nb-33Ti,Tc=9.3K,Hc=11.0特;Nb-60Ti,Tc=9.3K,Hc=12特(4.2K)。目前铌钛合金是用于7~8特磁场下的主要超导磁体材料。铌钛合金再加入钽的三元合金,性能进一步提高,Nb-60Ti-4Ta的性能是,Tc=9.9K,Hc=12.4特(4.2K);Nb-70Ti-5Ta的性能是,Tc=9.8K,Hc=12.8特。3、超导化合物:超导元素与其他元素化合常有很好的超导性能。如已大量使用的Nb3Sn,其Tc=18.1K,Hc=24.5特。其他重要的超导化合物还有V3Ga,Tc=16.8K,Hc=24特;Nb3Al,Tc=18.8K,Hc=30特。4、超导陶瓷:20世纪80年代初,米勒和贝德诺尔茨开始注意到某些氧化物陶瓷材料可能有超导电性,他们的小组对一些材料进行了试验,于1986年在镧-钡-铜-氧化物中发现了Tc=35K的超导电性。1987年,中国、美国、日本等国科学家在钡-钇-铜氧化物中发现Tc处于液氮温区有超导电性,使超导陶瓷成为极有发展前景的超导材料。三、超导材料的制备超导材料的制备方法很多,以前较为常用的有液相淬火法,离子轰击法,气相淬火法。化学气相沉积法CVD,表面扩散法和固态扩散法(青铜法)等等,对于高温超导陶瓷材料的制备而言,这些方法可以借鉴,但主要是运用一些化学和物理技术和方法,这里更趋向于采用陶瓷工艺制备。首先必须明确的是,发展超导材料的关键在于有效地运用科学方法,控制工艺参数,以形成超导相而避免其他不利的物质或杂质生成,努力使超导材料的超导相含量增高,甚至是单一超导相,提高转变温度,力求达到液氮温区或者干冰区,甚至追求室温超导体的制备为最终目标。目前的工作重点在于提高临界电流密度(Jc)和改善机械性质(KC和强度),这方面的研究刚起步。1、固相合成法原料是采用Tl2O3(纯度为85%),BaO(纯度为85%)或BaO2(纯度80%),CaO(纯度98%),CuO(纯度99%),按名义组成为TlBaCaCu2Oy,TlBaCaCu3Oy,TlBaCaCuOy,Tl2BaCa3Cu2Oy配料,经充分研磨混匀,然后,将混合料在500Mpa在压强下冷压成型,将成型的圆片放置在铂板或氧化铝板上,在电阻炉内通空气进行烧结,烧结温度为740-860℃,烧结时间4-8h,以后随炉冷却,制备出高Tc(超导转变临界温度)的样品。在不同温度下进行烧结,采用热分析法进行观测,发现在800℃以上,样品已有严重的失重,加热温度再高,失重加剧。但另一方向,要充分反应以形成更高转变温度的超导相,又需较高的烧结温度,因而只有合理控制工艺条件,采用快速升温,使原料中易挥发的Tl2O3迅速达到熔化,并同其他组成发生固一液反应,快速生成较稳定的物相,这样可大大减少在烧结过程TL的损失,获得在Tc为120K的超导体陶瓷。2、均匀溶胶一凝胶合成法先将铜粉在热硝酸中煮溶,再添加Y(NO3)3和BaCO3,因为溶液中PH值非常低,其中会形成少量的BaO,徐徐加入氢氧化铵,使溶液PH值超过7,BaO溶解,形成透明的绿兰色溶液,然后再将聚丙稀酸添加进溶液,在高PH值的溶液中将会迅速形成螯合物,即具有聚合碳基单元的凝胶系统,将凝胶置于瓷坩埚中125℃干燥3h,400-480℃熔烧3h,再以5℃/mm升至煅烧,随炉冷却便形成单纯合成材料。3、熔盐结构生长法这是一种新型晶体生长法,其中工艺包括熔化1:2:3(Y2O2,BaO,CuO)氧化物,控制从液体状冷却,生成一块样品,在Tc77K时泰斯勒磁场强度中Jc7400A/cm2,该料长80-250um,横截面225um,在晶体长轴方向有高导电性,其特点是比其他方法制备的123化合物的临界电流密度高100倍,此法由美国贝尔实验室提出,现在很受重视。4、液态淬火氧化法日本东北大学材料研究所用纯金属Yb,Ba,Ca须氩气保护电融熔融并迅速淬火后,得到厚度为80um,直径为30um的Yb,Ba,Cu3合金箔,然后再在800-900℃空气中处理3小时,得到氧化物箔片,X射线衍射分析结果表明,淬火状态的Ybi,Ba2,Cu3合金具有非品结构,高温氧化后得到和YBa2Cu3O7相同的结构,分子为YbBa2Cu3O6-8,这是一个值得重视的方法。5、套管拉丝法6、将具有Yo4BaO0.6CnO3-y名义组成配比的混合粉未烧成熟粉,再填充到铜管或银管中拉成直径为1mm的成材,对该铜线材是先经腐蚀去铜后再进行最终热处理,则试结果Tc=87K,77K零场下Jc=720A/cm2。用同样工艺制备的块状样品,其Jc为1.1×103A/cm2,又将该银线烧成φ2cm×2cm的线圈直接在氧气中进行最终热处理,液氮中的电流度Jc=510A/cm2,Tc=70K.6、单晶生长技术新超导化合物单晶样品有多种生长方法。溶液生长和气相传输生长法是制备从金属间氧化物到有机物各类超导体的强有力工具。过去10年来这些技术在不断发展,溶剂、输运剂、可控温度的范围在不断扩大。各类超导体的最新样品可通过这些方法制备。溶液生长的优点就是其多功能性和生长速度,可制备出高纯净度和镶嵌式样品。但是,它并不能生产出固定中子散射实验所需的立方厘米大小的样品。7、高质量薄膜技术目前,薄膜超导体技术包括活性分子束外延(MBE)、溅射、化学气相沉积和脉冲激光沉积等。MBE尤其能制造出足以与单个晶体性能相媲美的外延超导薄膜。目前正在研制平衡方法可使多层膜原子层工程具有新功能。在晶格匹配的单晶衬底上生长的外延高温超导薄膜,已经被广泛应用于这些材料物理性质的基础研究中。在许多实验中薄膜的几何性质拥有它的优势,如可用光刻技术在薄膜上刻画细微的特征;具备合成定制的多层结构或超晶格的潜能。四、超导材料的发展趋势及应用前景超导材料技术的发展趋势是不断探求更高温度的超导体,实现高温超导材料产业化技术,使超导材料技术应用更加广泛。高温超导材料经过近20年的研发,已经初步进入了大规模实际应用和产业化。目前超导材料正从研究阶段向应用发展阶段转变,且有可能进入产业化发展阶段。高温超导体作为现在临界温度最高的一种超导体,国内外科学家对其展开了大量的研究。但如何提高各项临界参数,尤其是提高临界温度,仍然是高温超导研究领域最大的难题。好在高温超导体可以在液氮温区实现超导,所以高温超导体已具备了实际应用的价值。超导材料正越来越多地应用于尖端技术中,如超导磁悬浮列车、超导计算机、超导电机与超导电力输送、火箭磁悬浮发射、超导磁选矿技术、超导量子干涉仪等。因此超导材料技术有着重大的应用发展潜力,可解决未来能源、交通、医疗和国防事业中的重要问题。陶瓷高温超导材料的发现和应用,将带动着广泛领域里许多有着重大竟义的应用前景,如约瑟夫逊效应器件,超导磁屏蔽,超导红外

1 / 11
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功