巨磁电阻实验报告

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

巨磁电阻实验报告【目的要求】1、了解GMR效应的原理2、测量GMR模拟传感器的磁电转换特性曲线3、测量GMR的磁阻特性曲线4、用GMR传感器测量电流5、用GMR梯度传感器测量齿轮的角位移,了解GMR转速(速度)传感器的原理【原理简述】根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规散射运动的叠加。称电子在两次散射之间走过的平均路程为平均自由程,电子散射几率小,则平均自由程长,电阻率低。电阻定律R=l/S中,把电阻率视为常数,与材料的几何尺度无关,这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约34nm),可以忽略边界效应。当材料的几何尺度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为0.3nm),电子在边界上的散射几率大大增加,可以明显观察到厚度减小,电阻率增加的现象。电子除携带电荷外,还具有自旋特性,自旋磁矩有平行或反平行于外磁场两种可能取向。早在1936年,英国物理学家,诺贝尔奖获得者N.F.Mott指出,在过渡金属中,自旋磁矩与材料的磁场方向平行的电子,所受散射几率远小于自旋磁矩与材料的磁场方向反平行的电子。总电流是两类自旋电流之和;总电阻是两类自旋电流的并联电阻,这就是所谓的两电流模型。在图2所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反铁磁)耦合的。施加足够强的外磁场后,两层铁磁膜的方向都与外磁场方向一致,外磁场使两层铁磁膜从反平行耦合变成了平行耦合。电流的方向在多数应用中是平行于膜面的。无外磁场时顶层磁场方向顶层铁磁膜中间导电层底层铁磁膜无外磁场时底层磁场方向图2多层膜GMR结构图图3是图2结构的某种GMR材料的磁阻特性。由图可见,随着外磁场增大,电阻逐渐减小,其间有一段线性区域。当外磁场已使两铁磁膜完全平行耦合后,继续加大磁场,电阻不再减图3某种GMR材料的磁阻特性磁场强度/高斯电阻\欧姆小,进入磁饱和区域。磁阻变化率ΔR/R达百分之十几,加反向磁场时磁阻特性是对称的。注意到图2中的曲线有两条,分别对应增大磁场和减小磁场时的磁阻特性,这是因为铁磁材料都具有磁滞特性。有两类与自旋相关的散射对巨磁电阻效应有贡献。其一,界面上的散射。无外磁场时,上下两层铁磁膜的磁场方向相反,无论电子的初始自旋状态如何,从一层铁磁膜进入另一层铁磁膜时都面临状态改变(平行-反平行,或反平行-平行),电子在界面上的散射几率很大,对应于高电阻状态。有外磁场时,上下两层铁磁膜的磁场方向一致,电子在界面上的散射几率很小,对应于低电阻状态。其二,铁磁膜内的散射。即使电流方向平行于膜面,由于无规散射,电子也有一定的几率在上下两层铁磁膜之间穿行。无外磁场时,上下两层铁磁膜的磁场方向相反,无论电子的初始自旋状态如何,在穿行过程中都会经历散射几率小(平行)和散射几率大(反平行)两种过程,两类自旋电流的并联电阻相似两个中等阻值的电阻的并联,对应于高电阻状态。有外磁场时,上下两层铁磁膜的磁场方向一致,自旋平行的电子散射几率小,自旋反平行的电子散射几率大,两类自旋电流的并联电阻相似一个小电阻与一个大电阻的并联,对应于低电阻状态。多层膜GMR结构简单,工作可靠,磁阻随外磁场线性变化的范围大,在制作模拟传感器方面得到广泛应用。在数字记录与读出领域,为进一步提高灵敏度,发展了自旋阀结构的GMR。【实验装置】巨磁电阻实验仪;基本特性组件;电流测量组件;角位移测量组件;磁读写组件;【实验内容】一、GMR模拟传感器的磁电转换特性测量在将GMR构成传感器时,为了消除温度变化等环境因素对输出的影响,一般采用桥式结构。a几何结构b电路连接GMR模拟传感器结构图对于电桥结构,如果4个GMR电阻对磁场的影响完全同步,就不会有信号输出。图17-9中,将处在电桥对角位置的两个电阻R3,R4覆盖一层高导磁率的材料如坡莫合金,以屏蔽外磁场对它们的影响,而R1,R2阻值随外磁场改变。设无外磁场时4个GMR电阻的阻值均为R,R1、R2在外磁场作用下电阻减小△R,简单分析表明,输出电压:UOUT=UIN(2R-R)(2)屏蔽层同时设计为磁通聚集器,它的高导磁率将磁力线聚集在R1、R2电阻所在的空间,进一步提高了R1,R2的磁灵敏度。从几何结构还可见,巨磁电阻被光刻成微米宽度迂回状的电阻条,以增大其电阻至k数量级,使其在较小工作电流下得到合适的电压输出。GMR模拟传感器的磁电转换特性模拟传感器磁电转换特性实验原理图将GMR模拟传感器置于螺线管磁场中,功能切换按钮切换为“传感器测量”。实验仪的4V电压源接至基本特性组件“巨磁电阻供电”,恒流源接至“螺线管电流输入”,基本特性组件“模拟信号输出”接至实验仪电压表。按表1数据,调节励磁电流,逐渐减小磁场强度,记录相应的输出电压于表格“减小磁场”列中。由于恒流源本身不能提供负向电流,当电流减至0后,交换恒流输出接线的极性,使电流反向。再次增大电流i,此时流经螺线管的电流与磁感应强度的方向为负,从上到下记录相应的输出电压。电流至-100mA后,逐渐减小负向电流,电流到0时同样需要交换恒流输出的极性。从下到上记录数据于表一“增大磁场”列中。理论上讲,外磁场为零时,GMR传感器的输出应为零,但由于半导体工艺的限制,4个桥臂电阻值不一定完全相同,导致外磁场为零时输出不一定为零,在有的传感器中可以观察到这一现象。根据螺线管上表明的线圈密度,由公式(1)计算出螺线管内的磁感应强度B。以磁感应强度B作横坐标,电压表的读数为纵坐标作出磁电转换特性曲线。不同外磁场强度时输出电压的变化反映了GMR传感器的磁电转换特性,同一外磁场强度下输出电压的差值反映了材料的磁滞特性。表1GMR模拟传感器磁电转换特性的测量(电桥电压4V)磁感应强度/高斯输出电压/mV励磁电流/mA磁感应强度/高斯减小磁场增大磁场1002312339023123380230232702292306022322250202195.040167.2154.630129.8114.7209275.71056.743.2540.415.3024.319.3-511.236.9-1039.452.8-2073.488.1-30110.5125.9-40150.4164-50189.6200-60220224-70230231-80232232-90233233-100233234二、GMR磁阻特性测量磁阻特性测量原理图为加深对巨磁电阻效应的理解,我们对构成GMR模拟传感器的磁阻进行测量。将基本特性组件的功能切换按钮切换为“巨磁阻测量”,此时被磁屏蔽的两个电桥电阻R3、R4被短路,而R1、R2并联。将电流表串连进电路中,测量不同磁场时回路中电流的大小,就可以计算磁阻。实验装置:巨磁阻实验仪,基本特性组件。将GMR模拟传感器置于螺线管磁场中,功能切换按钮切换为“巨磁阻测量”。实验仪的4伏电压源串连电流表后,接至基本特性组件“巨磁电阻供电”,恒流源接至“螺线管电流输入”。按表2数据,调节励磁电流,逐渐减小磁场强度,记录相应的磁阻电流于表格“减小磁场”列中。由于恒源流本身不能提供负向电流,当电流减至0后,交换恒流输出接线的极性,使电流反向。再次增大电流,此时流经螺线管的电流与磁感应强度的方向为负,从上到下记录相应的输出电压。电流至一100mA后,逐渐减小负向电流,电流到0时同样需要交换恒流输出接线的极性。从下到上记录数据于“增大磁场”列中。根据螺线管上表明的线圈密度,由公式(1)计算出螺线管内的磁感应强度B。由欧姆定律R=U/I计算磁阻。以磁感应强度B作横坐标,磁阻为纵坐标做出磁阻特性曲线。应该注意,由于模拟传感器的两个磁阻是位于磁通聚集器中,与图3相比,我们作出的磁阻曲线斜率大了约10倍,磁通聚集器结构使磁阻灵敏度大大提高。不同外磁场强度时磁阻的变化反映了GMR的磁阻特性,同一外磁场强度的差值反映了材料的磁滞特性。表2GMR磁阻特性的测量(磁阻两端电压4V)磁感应强度/高斯磁阻/Ω减小磁场增大磁场励磁电流/mA磁感应强度/高斯磁阻电流/mA磁阻/Ω磁阻电流/mA磁阻/Ω1001.9121.910901.9111.910801.9111.909701.9101.900601.9081.892501.8911.876401.8521.831301.8071.786201.7631.748101.7251.71351.7091.69601.6921.676-51.6781.699-101.7041.716-201.7381.752-301.7761.793-401.8181.838-501.8641.882-601.8961.905-701.9061.909-801.9091.910-901.9101.910-1001.9101.910三、GMR开关(数字)传感器的磁电转换特性曲线测量将GMR模拟传感器与比较电路,晶体管放大电路集成在一起,就构成GMR开关(数字)传感器,结构如图14所示。比较电路的功能是,当电桥电压低于比较电压时,输出低电平。当电桥电压高于比较电压时,输出高电平。选择适当的GMR电桥并结合调节比较电压,可调节开关传感器开关点对应的磁场强度。-20-100102030图14GMR开关传感器结构图图15GMR开关传感器磁电转换特性GMR电桥比较电路输出输出电压/V磁场强度/高斯开开关关图15是某种GMR开关传感器的磁电转换特性曲线。当磁场强度的绝对值从低增加到12高斯时,开关打开(输出高电平),当磁场强度的绝对值从高减小到10高斯时,开关关闭(输出低电平)。实验装置:巨磁阻实验仪,基本特性组件。将GMR模拟传感器置于螺线管磁场中,功能切换按钮切换为“传感器测量”。实验仪的4伏电压源接至基本特性组件“巨磁电阻供电”,“电路供电”接口接至基本特性组件对应的“电路供电”输入插孔,恒流源接至“螺线管电流输入”,基本特性组件“开关信号输出”接至实验仪电压表。从50mA逐渐减小励磁电流,输出电压从高电平(开)转变为低电平(关)时记录相应的励磁电流于表3“减小磁场”列中。当电流减至0后,交换恒流输出接线的极性,使电流反向。再次增大电流,此时流经螺线管的电流与磁感应强度的方向为负,输出电压从低电平(关)转变为高电平(开)时记录相应的负值励磁电流于表3“减小磁场”列中。将电流调至-50mA。逐渐减小负向电流,输出电压从高电平(开)转变为低电平(关)时记录相应的负值励磁电流于表3“增大磁场”列中,电流到0时同样需要交换恒流输出接线的极性。输出电压从低电平(关)转变为高电平(开)时记录相应的正值励磁电流于表3“增大磁场”列中。表3GMR开关传感器的磁电转换特性测量高电平=V低电平=V减小磁场增大磁场开关动作励磁电流/mA磁感应强度/高斯开关动作励磁电流/mA磁感应强度/高斯关关开开根据螺线管上标明的线圈密度,由公式(1)计算出螺线管内的磁感应强度B。以磁感应强度B作横座标,电压读数为纵座标作出开关传感器的磁电转换特性曲线。利用GMR开关传感器的开关特性已制成各种接近开关,当磁性物体(可在非磁性物体上贴上磁条)接近传感器时就会输出开关信号。广泛应用在工业生产及汽车,家电等日常生活用品中,控制精度高,恶劣环境(如高低温,振动等)下仍能正常工作。由于仪器故障原因,此步骤无法进行。四、用GMR模拟传感器测量电流GMR模拟传感器在一定的范围内输出电压与磁场强度成线性关系,且灵敏度高,线性范围大,可以方便的将GMR制成磁场计,测量磁场强度或其它与磁场相关的物理量。作为应用示例,我们用它来测量电流。由理论分析可知,通有电流I的无限长直导线,与导线距离为r的一点的磁感应强度为:B=μ0I/2πr=2I×10-7/r(3)磁场强度与电流成正比,在r已知的条件下,测得B,就可知I。在实际应用中,为了使GMR模拟传感器工作在线性区,提高测量精度,还常常预先给传感器施加一固定已知磁场,称为磁偏置,其原理类似于电子电路中的直流偏置。模拟传感器测量电流实验原理图实验装置

1 / 13
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功