1.运动状态分析带电粒子沿与电场线平行的方向进入匀强电场,受到的电场力与运动方向在同一直线上,做加速(或减速)直线运动。2.用功能观点分析粒子动能的变化量等于电场力做的功。(1)若粒子的初速度为零,则qU=mv2/2,V=2qUm(2)若粒子的初速度不为零,则qU=mv2/2-mv02/2,V=202qUVm3.用牛顿运动定律和运动学公式分析:带电粒子平行电场线方向进入匀强电场,则带电粒子做匀变速直线运动,可由电场力求得加速度进而求出末速度、位移或时间。说明:(1)不管是匀强电场还是非匀强电场加速带电粒子W=qU都适应,而W=qEd,只适应于匀强电场.(2)对于直线加速,实质上是电势能转化为动能,解决的思路是列动能定理的方程(能量观点)来求解。例1:如图8-1所示,带电粒子在电场中的加速:在真空中有一对平行金属板,两板间加以电压U,两板间有一个带正电荷q的带电粒子,它在电场力的作用下,由静止开始从正极板向负极板运动,到达负极板时的速度有多大?(不考虑带电粒子的重力)【审题】本题是带电粒子在匀强电场中的加速问题,物理过程是电场力做正功,电势能减少,动能增加,利用动能定理便可解决。【解析】带电粒子在运动过程中,电场力所做的功W=qU。设带电粒子到达负极板时的动能EK=12mv2,由动能定理qU=12mv2得:v=2qUm【总结】上式是从匀强电场中推出来的,若两极板是其他形状,中间的电场不是匀强电场,上式同样适用。例2:下列粒子从初速度为零的状态经过加速电压为U的电场之后,哪种粒子的速度最大?(A)a粒子(B)氚核(C)质子(D)钠离子aN【审题】解答本题需要把带电粒子在电场中加速的知识与原子核知识联系起来。1.本题已知电场的加速电压为U,要判断的是粒子被加速后的速度v的大小,因此采用221mvqU分析问题比较方便。2.若以mp表示质子11H的质量、以e表示质子的电量,则根据所学过的原子核知识可知——α粒子He42的质量应为4mp、电荷量应为2e;氚核H31的质量应为3mp、电量应为e;钠离子Na的质量比其它三种粒子的质量都大(由于是选择判断题,对此未记质量数也无妨)、电量应为e。【解析】根据212qUmv可以导出下式:mqUv2由此可知:对于各种粒子来说,加速电压U都是相同的。因此v与q成正比;v与m成反比。图8-1因为质子和钠离子所带的电量相同,而钠离子的质量却比质子大得多,所以可断定——电场加速后的质子速度应比钠离子大得多。因此选项(D)首先被淘太。2.为了严格和慎重起见,我们对被加速后的α粒子、氚核、质子的速度进行下列推导:对于α粒子——质量为4mp、电量为2epaameUmpeUmUqva4222对于氚核——质量为3mp、电量为eppmeUmeUv3232氚对于质子——质量为mp电量为epppmeUmeUv22从比较推导的结果中知:质子的速度VP最大,正确答案为(C)。【总结】本题关键是正确使用动能定理,正确得出速度的表达式,由表达式加以讨论,进而得出正确选项。例3:如图8-2所示,真空中相距d=5cm的两块平行金属板A、B与电源连接(图中未画出),其中B板接地(电势为零),A板电势变化的规律如图8-3所示.将一个质量m=2.0×10-23kg,电量q=+1.6×10-1C的带电粒子从紧临B板处释放,不计重力.求:(1)在t=0时刻释放该带电粒子,释放瞬间粒子加速度的大小;(2)若A板电势变化周期T=1.0×10-5s,在t=0时将带电粒子从紧临B板处无初速释放,粒子到达A板时动量的大小;(3)A板电势变化频率多大时,在t=4T到t=2T时间内从紧临B板处无初速释放该带电粒子,粒子不能到达A板.【审题】本题需要正确识别图像,由图像提供的信息分析带电粒子在电场中的受力,由受力情况得出粒子的运动情况,选择正确的物理规律进行求解。【解析】电场强度E=Ud带电粒子所受电场力UqFEqd,F=ma924.010/Uqamsdm图8-2图8-3粒子在02T时间内走过的距离为221()5.01022Tam故带电粒在在2Tt时恰好到达A板根据动量定理,此时粒子动量234.010pFtkg·m/s带电粒子在42TTtt向A板做匀加速运动,在324TTtt向A板做匀减速运动,速度减为零后将返回,粒子向A板运动的可能最大位移22112()2416TsaaT要求粒子不能到达A板,有sd由1fT,电势频率变化应满足4521016afdHZ【总结】带电粒子在周期性变化的匀强电场中的运动比较复杂,运动情况往往由初始条件决定,具体问题需要具体分析。(1)运动分析:若粒子受力方向与运动方向相同,则粒子加速运动;若粒子受力方向与运动方向相反,则粒子减速运动。(2)处理方法:①利用牛顿运动定律结合运动学公式。②利用能量观点,如动能定理,若为非匀强电场只能用能量观点。(二)带电粒子的偏转(限于匀强电场)1.运动状态分析:带电粒子以速度V0垂直电场线方向飞入匀强电场时,受到恒定的与初速度方向成900角的电场力作用而做匀变速曲线运动。2.偏转问题的分析处理方法:类似平抛运动的分析处理,应用运动的合成和分解知识分析处理。(1)垂直电场方向的分运动为匀速直线运动:t=L/V0;vx=v0;x=v0t(2)平行于电场方向是初速为零的匀加速运动:vy=at,y=12at2经时间t的偏转位移:y=qU2md(xV0)2;粒子在t时刻的速度:Vt=V02+Vy2;时间相等是两个分运动联系桥梁;偏转角:tgφ=VyV0=qUxmdv02例4:如图8-4所示,一束带电粒子(不计重力),垂直电场线方向进入偏转电场,试讨论在以下情况下,粒子应具备什么条件才能得到相同的偏转距离y和偏转角度φ(U、d、L(1)进入偏转电场的速度相同;(2)进入偏转电场的动能相同;图8-4(3(4【审题】本题是典型的带电粒子在匀强电场中的偏转问题,是一个类平抛运动,关键是正确推出偏转距离y和偏转角度φ的表达式,根据题目给出的初始条件得出正确选项。【解析】(1)由带电粒子在偏转电场中的运动偏转距离y=12at2=qU2md(LV0)2偏转角tgφ=atv0=qULmdv02讨论:(1)因为v0相同,当q/m相同,y、tg(2)因为12mv02相同,当q相同,则y、tgφ相同;(3)因为mv0相同,当m、q相同或q/v0相同,则y、tg(4)设加速电场的电压为U′,由qU′=12mv02,有:y=UL24dU',tgφ=UL2dU'【总结】可见,在(4)的条件下,不论带电粒子的m、q如何,只要经过同一加速电场加速,再垂直进入同一偏转电场,它们飞出电场的偏转距离y和偏转角度φ都是相同的。(三)先加速后偏转若带电粒子先经加速电场(电压U加)加速,又进入偏转电场(电压U偏),射出偏转电场时的侧移22222012244qULqULULyatdmVdqUdU偏偏偏加加偏转角:tgφ=VyV0=U偏L2U加d带电粒子的侧移量和偏转角都与质量m、带电量q无关。(四)示波管原理1.构造及功能如图8-5所示(1)电子枪:发射并加速电子.(2)偏转电极YY':使电子束竖直偏转(加信号电压)偏转电极XX':使电子束水平偏转(加扫描电压)(3)荧光屏.2.原理:○1YY'作用:被电子枪加速的电子在YY'电场中做匀变速曲线运动,出电场后做匀速直线运动打到荧光图8-2屏上,由几何知识'22LlyLy,可以导出偏移20'()tan()22LqlLyllUmVd。若信号电压U=Umaxsinwt,y’=20()2qlLlUmVdmaxsinwt=ymaxsinwt.y’随信号电压同步调变化,但由于视觉暂留及荧光物质的残光特性看到一条竖直亮线.加扫描电压可使这一竖直亮线转化成正弦图形。○2XX’的作用:与上同理,如果只在偏转电极XX’上加电压,亮斑就在水平方向发生偏移,加上扫描电压,一周期内,信号电压也变化一周期,荧光屏将出现一完整的正弦图形.例5:如图8-6所示,是一个示波管工作原理图,电子经加速以后以速度V0垂直进入偏转电场,离开电场时偏转量是h,两平行板间的距离为d,电势差为U,板长为L.每单位电压引起的偏移量(h/U)叫做示波管的灵敏度,为了提高灵敏度,可采用下列哪些办法?()增大两板间的电势差U尽可能使板长L做得短些尽可能使两板间距离d减小些使电子入射速度V0大些【审题】本题物理过程与例题4相同,也是带电粒子的偏转问题,与示波管结合在一起,同时题目当中提到了示波管的灵敏度这样一个新物理量,只要仔细分析不难得出正确结论。【解析】竖直方向上电子做匀加速运动,故有h=12at2=2202qULdmV,则2202hqLUdmV可知,只有C选项正确.【总结】本题是理论联系实际的题目,同时题目中提出了示波管灵敏度这一新概念,首先需要搞清这一新概念,然后应用牛顿第二定律及运动学公式加以求解。该种类型的题目分析方法是:先画出入射点轨迹的切线,即画出初速度v0的方向,再根据轨迹的弯曲方向,确定电场力的方向,进而利用力学分析方法来分析其它有关的问题。例6:在图8-7甲中,虚线表示真空里一点电荷Q的电场中的两个等势面,实线表示一个带负电q的粒子运动的路径,不考虑粒子的重力,请判定(1)Q是什么电荷?(2)ABC三点电势的大小关系;(3)ABC三点场强的大小关系;【审题】A、B、C是带电粒子在电场中运动轨迹上的三点,通过轨迹的弯曲方向得出受力方向,由受力方向判断Q的电性,画出电场线,判断电势的高低及场强的大小;根据电场力对带电粒子的做功情况判断粒子在A、B、C三点动能的大小关系。【解析】(1)设粒子在A点射入,则A点的轨迹切线方向就是粒子q的初速v0的方向(如图8-7乙)。由于粒子q向偏离Q的方向偏转,因此粒子q受到Q的作用力是排斥力,故Q与qdLh图8-6图8-7(2)因负电荷Q的电场线是由无穷远指向Q的,因此φA=φC(3)由电场线的疏密分布(或由E=kQ/r2EA=ECEB(4)因粒子从A→B电场力做负功,由动能定理可知EkBEkAA=φC,由电场力做功WAC=qUACWAC=0,因此由动能定理得EkA=EkC,故EkA=EkCEkB【总结】该种类型的题目分析方法是:先画出入射点轨迹的切线,即画出初速度v0的方向,再根据轨迹的弯曲方向,确定电场力的方向,进而利用力学分析方法来分析其它有关的问题。例7:在图8-8中a、b和c表示点电荷a的电场中的三个等势面,它们的电势分别为U、32U、41U。一带电粒子从等势面a上某处由静止释放后,仅受电场力作用而运动,已知它经过等势面b时的速率为v,则它经过等势面c的速率为。【审题】1.已知a、b、c三点的电势的大小关系为U32U41U根据“电场线的方向总是由电势高的等势面指向电势低的等势面”的性质,可分析出本题中的电场线方向是由场源点电荷Q为中心向四处放射的,而这样分布电场线的场源点电荷应当是带正电的。2.原来处于静止状态的带电粒子,若仅受电场力作用应做加速运动。应沿着电场线的方向由电势高处向电势低处运动。说明:前面所说的加速运动不一定是匀加速运动。只有在匀强电场中带电粒子才会作匀加速运动。在非匀强电场中(例如在点电荷场源的电场中)由于各处的电场强度不同,电荷所受的电场力的大小是变化的,所以加速度的大小也是变化的。3.解答本题选用的主要关系式为:mvmvqUbaab222121式中Uab两等势面的电势差,va、vb为带电粒子经过时a、b等势面时的速率。(对于b、c两等势面也存在同样形式的关系式。)【解析】设:带电粒子的电量为q;a、b两等势面的电势差为Uab,b、c两等势面的电势差Ubc;带电粒子经过等势面a、b、c时的速率分别为Va、Vb、Vc。(已知:Va=0,Vb=v)则:mvmvqUbbab222121①mvmvqUbcbc222121②将①、②两式相除可得:vvvvUUbcabbcab2222③将UUUUab3132、UUUUbC1254132