探究圆锥曲线中离心率的问题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1页共5页探究圆锥曲线中离心率的问题离心率是圆锥曲线中的一个重要的几何性质,在高考中频繁出现,下面给同学们介绍常用的四种解法。一、直接求出a、c,求解e已知标准方程或a、c易求时,可利用离心率公式ace来求解。【例1】»过双曲线C:)0b(1byx222的左顶点A作斜率为1的直线l,若l与双曲线M的两条渐近线分别相交于点B、C,且|AB|=|BC|,则双曲线M的离心率是()A.10B.5C.310D.25二、变用公式,整体求出e【例2】»已知双曲线)0b,0a(1byax2222的一条渐近线方程为x34y,则双曲线的离心率为()A.35B.34C.45D.23三、第二定义法由圆锥曲线的统一定义(或称第二定义)知离心率e是动点到焦点的距离与相应准线的距离比,特别适用于条件含有焦半径的圆锥曲线问题。【例3】»在给定椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应准线的距离为1,则该椭圆的离心率为()A.2B.22C.21D.42四.构造a、c的齐次式,解出e根据题设条件,借助a、b、c之间的关系,构造出a、c的齐次式,进而得到关于e的方程,通过解方程得出离心率e的值,这也是常用的一种方法。【例4】»已知1F、2F是双曲线)0b,0a(1byax2222的两焦点,以线段F1F2为边作正21FMF,若边1MF的中点在双曲线上,则双曲线的离心率是()A.324B.13C.213D.13第2页共5页【变式】»设椭圆的两个焦点分别为F1、F2,过F2作椭圆长轴的垂线交椭圆于点P,若21PFF为等腰直角三角形,则椭圆的离心率是()A.22B.212C.22D.121.(2009全国卷Ⅰ)设双曲线22221xyab(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率等于()(A)3(B)2(C)5(D)62.(2009浙江理)过双曲线22221(0,0)xyabab的右顶点A作斜率为1的直线,该直线与双曲线的两条渐近线的交点分别为,BC.若12ABBC,则双曲线的离心率是()A.2B.3C.5D.103.(2009浙江文)已知椭圆22221(0)xyabab的左焦点为F,右顶点为A,点B在椭圆上,且BFx轴,直线AB交y轴于点P.若2APPB,则椭圆的离心率是()A.32B.22C.13D.124.(2009山东卷理)设双曲线12222byax的一条渐近线与抛物线y=x2+1只有一个公共点,则双曲线的离心率为().A.45B.5C.25D.55.(2009安徽卷理)下列曲线中离心率为62的是()(A)22124xy(B)22142xy(C)22146xy(D)221410xy第3页共5页6.(2009江西卷文)设1F和2F为双曲线22221xyab(0,0ab)的两个焦点,若12FF,,(0,2)Pb是正三角形的三个顶点,则双曲线的离心率为A.32B.2C.52D.37.(2009江西卷理)过椭圆22221xyab(0ab)的左焦点1F作x轴的垂线交椭圆于点P,2F为右焦点,若1260FPF,则椭圆的离心率为()A.22B.33C.12D.138.(2009全国卷Ⅱ理)已知双曲线222210,0xyCabab:的右焦点为F,过F且斜率为3的直线交C于AB、两点,若4AFFB,则C的离心率()A.65B.75C.58D.959.(2008福建理11)双曲线22221xyab(a>0,b>0)的两个焦点为F1、F2,若P为其上一点,且|PF1|=2|PF2|,则双曲线离心率的取值范围为()A.(1,3)B.1,3C.(3,+)D.3,10.(2008湖南理8)若双曲线22221xyab(a>0,b>0)上横坐标为32a的点到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是()A.(1,2)B.(2,+)C.(1,5)D.(5,+)11.(2008江西理7)已知1F、2F是椭圆的两个焦点,满足120MFMF的点M总在椭圆内部,则椭圆离心率的取值范围是()A.(0,1)B.1(0,]2C.2(0,)2D.2[,1)212.(2008全国二理9)设1a,则双曲线22221(1)xyaa的离心率e的取值范围是()A.(22),B.(25),C.(25),D.(25),第4页共5页13.(2008陕西理8)双曲线22221xyab(0a,0b)的左、右焦点分别是12FF,,过1F作倾斜角为30的直线交双曲线右支于M点,若2MF垂直于x轴,则双曲线的离心率为()A.6B.3C.2D.3314.(2008浙江理7)若双曲线12222byax的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是()(A)3(B)5(C)3(D)515.(2008全国二文11)设ABC△是等腰三角形,120ABC,则以AB,为焦点且过点C的双曲线的离心率为()A.221B.231C.21D.3116.(2008湖南文10)双曲线)0,0(12222babyax的右支上存在一点,它到右焦点及左准线的距离相等,则双曲线离心率的取值范围是()A.(1,2]B.[2,)C.(1,21]D.[21,)17.(2007全国2理)设12FF,分别是双曲线2222xyab的左、右焦点,若双曲线上存在点A,使1290FAF且123AFAF,则双曲线的离心率为()A.52B.102C.152D.518(07全国2文).已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于()A.13B.33C.12D.3219(07江苏理3).在平面直角坐标系xOy中,双曲线中心在原点,焦点在y轴上,一条渐近线方程为20xy,则它的离心率为()A.5B.52C.3D.220.设12FF,分别是椭圆22221xyab(0ab)的左、右焦点,若在其右准线上存在,P使线段1PF的中垂线过点2F,则椭圆离心率的取值范围是()A.202,B.303,C.212,D.313,第5页共5页21(07湖南文).设12FF,分别是椭圆22221xyab(0ab)的左、右焦点,P是其右准线上纵坐标为3c(c为半焦距)的点,且122||||FFFP,则椭圆的离心率是()A.312B.12C.512D.2222(07北京文4).椭圆22221(0)xyabab的焦点为1F,2F,两条准线与x轴的交点分别为MN,,若12MNFF≤,则该椭圆离心率的取值范围是()A.102,B.202,C.112,D.212,23.(2009重庆卷文)已知椭圆22221(0)xyabab的左、右焦点分别为12(,0),(,0)FcFc,若椭圆上存在一点P使1221sinsinacPFFPFF,则该椭圆的离心率的取值范围为.24.(2009湖南卷理)已知以双曲线C的两个焦点及虚轴的两个端点为原点的四边形中,有一个内角为60o,则双曲线C的离心率为__________25.(2008全国一理15)在ABC△中,ABBC,7cos18B.若以AB,为焦点的椭圆经过点C,则该椭圆的离心率e.26(2010辽宁文数)设双曲线的一个焦点为F,虚轴的一个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为(A)2(B)3(C)312(D)51227(2010四川理数)(9)椭圆22221()xyabab的右焦点F,其右准线与x轴的交点为A,在椭圆上存在点P满足线段AP的垂直平分线过点F,则椭圆离心率的取值范围是(A)20,2(B)10,2(C)21,1(D)1,1228(2010广东文数)7.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是A.54B.53C.52D.5129、(2010全国卷1文数)(16)已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且BF2FDuuruur,则C的离心率为.

1 / 5
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功