常见的低压配电方式有哪些

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

常见的低压配电方式有哪些?发表日期:2010-11-04常见的低压配电方式有哪些一、路灯常用接地方式:根据IEC规定,供电系统的接地方式分为TT系统、TN系统、IT系统。其中TN系统又分为TN-C、TN-S、TN-C-S系统。(一)TT方式供电系统TT方式是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称TT系统。第一个符号T表示电力系统中性点直接接地;第二个符号T表示负载设备外露不与带电体相接的金属导电部分与大地直接联接,而与系统如何接地无关。在TT系统中负载的所有接地均称为保护接地,这种供电系统的特点如下。1、当电气设备的金属外壳带电(相线碰壳或设备绝缘损坏而漏电)时,由于有接地保护,可以大大减少触电的危险性。但是,低压断路器(自动开关)不一定能跳闸,造成漏电设备的外壳对地电压高于安全电压,属于危险电压。2、当漏电电流比较小时,即使有熔断器也不一定能熔断,所以还需要漏电保护器作保护。3、TT系统适用于接地保护占很分散的地方。(二)TN方式供电系统这种供电系统是将电气设备的金属外壳与工作零线相接的保护系统,称作接零保护系统,用TN表示。它的特点如下。1、一旦设备出现外壳带电,接零保护系统能将漏电电流上升为短路电流,这个电流很大,是TT系统的5.3倍,实际上就是单相对地短路故障,熔断器的熔丝会熔断,低压断路器的脱扣器会立即动作而跳闸,使故障设备断电,比较安全。2、TN系统节省材料、工时,在我国和其他许多国家广泛得到应用,可见其优点比TT系统多。TN方式供电系统中,根据其保护零线是否与工作零线分开而划分为TN-C和TN-S等两种。(1)TN-C方式供电系统它是用工作零线兼作接零保护线,可以称作保护中性线,用PEN表示这种供电系统的特点如下:1)由于路灯配电系统三相负载很难平衡,工作零线上有不平衡电流,对地有电压,所以与保护线所联接的电气设备金属外壳有一定的电压。2)如果工作零线断线,则保护接零的漏电设备外壳带电。3)如果电源的相线碰地,则设备的外壳电位升高,使中性线上的危险电位蔓延。4)TN-C系统干线上使用漏电保护器时,工作零线后面的所有重复接地必须拆除,否则漏电开关合不上;而且,工作零线在任何情况下都不得断线。所以,实用中工作零线只能让漏电保护器的上侧有重复接地。5)TN-C方式供电系统只适用于三相负载基本平衡情况。(2)TN-S方式供电系统它是把工作零线N和专用保护线PE严格分开的供电系统,称作TN-S供电系统,其特点如下。1)系统正常运行时,专用保护线上不带电流,只是工作零线上有不平衡电流。PE线对地没有电压,所以电气设备金属外壳接零保护是接在专用的保护线PE上,安全可靠。2)工作零线只用作单相照明负载回路。3)专用保护线PE不许断线,也不许进入漏电开关。4)干线上使用漏电保护器,工作零线不得有重复接地,而PE线有重复接地,但是不经过漏电保护器,所以TN-S系统供电干线上也可以安装漏电保护器。5)TN-S方式供电系统安全可靠,适用对安全要求较高的配电线路。(3)TN-C-S方式供电系统在配电线路中,如果前部分是TN-C方式供电,而下一部分采用TN-S方式供电系统,则可以在系统后部分现场总配电箱分出PE线,这种系统称为TN-C-S供电系统。TN-C-S系统的特点如下。1)工作零线N与专用保护线PE相联通,当线路不平衡电流比较大时,电气设备的接零保护受到零线电位的影响。负载越不平衡,灯杆外壳对地电压偏移就越大。所以要求负载不平衡电流不能太大,而且在PE线上应作重复接地。2)PE线在任何情况下都不能进入漏电保护器,因为线路末端的漏电保护器动作会使前级漏电保护器跳闸造成大范围停电。3)对PE线除了在总箱处必须和N线相接以外,其他各分箱处均不得把N线和PE线相联,PE线上不允许安装开关和熔断器。通过上述分析,TN-C-S供电系统是在TN-C系统上临时变通的作法。当三相电力变压器工作接地情况良好、三相负载比较平衡时,TN-C-S系统在施工用电实践中效果还是可行的。但是,在三相负载不平衡,工地有专用的电力变压器时,必须采用TN-S方式供电系统。二、TN-S系统重复接地分析:现实生活中部分电气施工人员对TN-S系统中重复接地的有关问题及要求不甚了解,在实际施工中出现一些问题。集中表现为:就TN-S系统的重复接地问题中是对N线重复接地,还是对PE重复接地莫衷一是,提法不明确。对于TN-S系统,重复接地就是对PE线的重复接地,分析如下:1、如不进行重复接地,当PE断线时,系统处于既不接零也不接地的无保护状态。而对其进行复重接地以后,当PE正常时,系统处于接零保护状态;当PE断线时,如果断线处在重复接地前侧,系统则处在接地保护状态。进行了重复接地的TN-S系统具有一个非常有趣的双重保护功能,即PE断线后由TN-S转变成TT系统的保护方式(PE断线在重复接地前侧)。2、当相线断线与大地发生短路时,由于故障电流的存在造成PE线电位升高,当断线点与大地间电阻较小时,PE线的电位很有可能远远超过安全电压。这种危险电压沿PE线传至灯杆设备等外壳乃至危及人身安全。而进行重复接地以后,由于重复接地电阻与电源工作接地电阻并联后的等效电阻小于电源工作接地电阻,使得相线断线接地处的接地电阻分担的电压增加,从而有效降低PE线对地电压,减少触电危险。3、PE线的重复接地可以降低当相线碰壳短路时的设备外壳对地的电压,相线碰壳时,外壳对地电压即等于故障点P与变压器中性点间的电压。假设相线与PE线规格一致,设备外壳对地电压则为110V。而PE线重复接地后,从故障点P起,PE线阻抗与重复接地电阻RE同工作接地电阻RA串联后的电阻相并联。在一般情况下,由于重复接地电阻RE同工作接地电阻RA串联后的电阻远大于PE线本身的阻抗,因而从P至变压器中性点的等效阻抗,仍接近于从P至变压器中性点的PE线本身的阻抗。如果相线与PE线规格一致,则P与变压器中性点间的电压UPO仍约为110V,而此时设备外壳对地电压UP仅为故障P点与变压器中性点间的电压UPO的一部分,可表示为:UP=UPO×RERA+RE。假设重复接地电阻RE为10剑ぷ鹘拥氐缱鑂A为4剑騏P=78.6V。如果只是对N线重复接地,它不具有上述第1项与第3项作用,只具有上述第2项的作用。对于TN-S系统,其用电设备外壳是与PE线相接的,而不是N线。因此,我们所关心的更主要的是PE线的电位,而不是N线的电位,TN-S系统的重复接地不是对N线的重复接地。如果将PE线和N线共同接地,由于PE线与N线在重复接地处相接,重复接地前侧(接近于变压器中性点一侧)的PE线与N线已无区别,原由N线承担的全部中性线电流变为由N线和PE线共同承担(一小部分通过重复接地分流)。可以认为,这时重复接地前侧已不存在PE线,只有由原PE线及N线并联共同组成的PEN线,原TN-S系统实际上已变成了TN-C-S系统,原TN-S系统所具有的优点将丧失,故不能将PE线和N线共同接地。在工程实践中,对于TN-S系统,很少将N线和PE线分别重复接地。其原因主要为:1、将N线和PE线分别重复接地仅比PE线单独重复接地。其原因主要为:多一项作用,即可以降低当N线断线时产生的中性点电位的偏移作用,有利于用电设备的安全,但是这种作用并不一定十分明显,并且一旦工作零线重复接地,其前侧便不能采用漏电保护。2、如果要将N线和PE线分别重复接地,为保证PE线电位稳定,避免受N线电位的影响,N线的重复接地必须与PE线的重复接地及灯杆基础钢筋保持足够的距离,最好为20m以上,而在路灯实际施工中很难做到这一点。三、接地电阻值Rd理论上,接地电阻越小,接触电压和跨步电压就越低,对人身越安全。但要求接地电阻越小,则人工接地装置的投资也就越大,而且在土壤电阻率较高的地区不易做到。在路灯实际工作中,接地电阻值通常按下面数值考虑:在1000V以下中性点直接接地系统中,接地电阻Rd应小于或等于4000V以下的中性点不接地系统中,一般规定接地电阻R为4d应小于或等于4。引言在现代人的生活中,断路器绝对是一种举足轻重的电路装置,而且是家用电路中最重要的安全机制之一。一旦房屋配线中的电流流量过大,这种简单的电路装置就会切断电源,直至故障被排除。如果没有断路器(或其替代品——保险丝),家庭用电就会非常不方便,原因在于,仅仅是线路问题和设备故障就可能会造成火灾和其他事故。在本文中,我们会介绍断路器和保险丝如何监控电流,以及它们在电流水平过高时如何切断电源。我们不难发现,对于可能造成人员伤亡的事故来说,使用断路器不失为一种最简单的解决方案。电学基础知识欲了解断路器,不妨先了解一下家用电路的工作原理。电气属性主要由三个参量来界定:电压电流电阻电压是推动电荷移动的“压力”。电流是电荷之“流”——即电荷流过导体的速率,可在任一定点测量。导体对电流具有一定程度的阻碍作用,称为电阻,阻值的大小由导体的材料和尺寸所决定。电压、电流和电阻这三者是相互关联的——改变其中一个另两个也会发生改变。电流等于电压除以电阻(一般记作I=v/r)。我们可以直观地想到:如果增大驱动电荷的电压或是降低电阻,电流就会增大。如果降低电压或增大电阻,电流就会减小。所有这些又是如何来到您家中的呢?配电网把电流从发电厂输送到您的家中。在家用电路内,电荷会在大电路中流动,大电路又由很多小电路组成。电路的一端是火线,与发电厂相连。另一端称为零线,与地面相连。由于火线与高电位相连,而零线则连往零电位(地面),电路两端就产生了电压——只要电路闭合,电荷就会流动。这样的电流称为交变电流,因为它能迅速地改变方向。断路器设计基本型最简单的电路保护装置是保险丝。保险丝只是一根很细的导线,加上一个保护套之后接入电路。电路闭合后,所有电流必须流经保险丝——保险丝处的电流与同一电路上其他各点的电流相同。设计这种保险丝,是为了让它在温度达到某一水平时能够熔断。烧毁保险丝可以造成开路,从而防止过量电流破坏房屋配线。保险丝的问题是,它只能发挥一次作用。每当保险丝被烧断后,就必须换一个新的。断路器能起到与保险丝相同的作用,却可以反复使用。只要电流达到危险水平,它就能立刻造成开路。电路中的火线与开关两端相连。当开关置于接通状态时,电流从底部终端流出,依次流经电磁体、移动接触器、静态接触器,最终从顶部终端流出。电流能磁化电磁体(请查阅电磁体工作原理一文,了解具体原因)。电磁体产生的磁力随电流的增强而增强,如果电流降低,磁力也会减弱。当电流跃升到危险水平时,电磁体会产生足够大的磁力,以拉动一根与开关联动装置相连的金属杆。这会使移动接触器倾斜并离开静态接触器,继而切断电路。电流也就中断了。点击断路器,观看打开开关的情形。双金属条设计依据的是相同的原理,区别在于这里无需给电磁体能量,而是让金属条在高电流下自行弯曲,继而启动联动装置。还有些断路器靠填充易爆物来移置开关。当电流超过某一水平时,就会点燃易爆材料,继而驱动活塞打开开关。增强型更先进的断路器摒弃了简单的电气设备,转而使用电子器件(半导体设备)来监测电流水平。这些元件的精度要高得多,而且能更为迅速地切断电路,但价格也要贵得多。因此,多数家庭仍使用传统电气断路器。接地故障断路器(GFCI)是一种新型断路器。这种断路器,不仅能预防房屋配线损毁,而其能保护人免遭电击。GFCI会不断监测电路中零线和火线上的电流。一切正常时,两条线上的电流应当完全相同。一旦火线直接接地(例如有人不慎触碰火线),火线上的电流会突然猛增,而零线则不会。GFCI在检测到这种情况后会立即切断电路,以防止触电伤亡事故。由于GFCI无需等到电流上升到危险水平就能采取行动,因而其反应速度要比传统断路器快得多。房屋内的所有线路都应汇聚到中央断路器仪表板(或保险盒仪表板),仪表板通常位于地下室,或在一个壁橱内。典型的中央仪表板大约有十二个断路开关,它们连接着家庭电路中不同的支路。应当有一条支路能将客厅所有的电源插座汇集起来,还应有一条支路专门负责一楼的照明工作。大型的家用电器一般都使用专用电路,例如中央空调系统或电冰箱。配电网以恒定的电压输电(在美国是

1 / 8
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功