1实验三多元线性回归模型和非线性回归模型【实验目的】掌握建立多元线性回归模型和非线性回归模型,以及比较、筛选模型的方法。【实验内容】建立我国国有独立核算工业企业生产函数。根据生产函数理论,生产函数的基本形式为:(,,,)YftLK。其中,L、K分别为生产过程中投入的劳动与资金,时间变量t反映技术进步的影响。表3.1列出了我国1978-1994年期间国有独立核算工业企业的有关统计资料;其中产出Y为工业总产值(可比价),L、K分别为年末职工人数和固定资产净值(可比价)。表3.1我国国有独立核算工业企业统计资料年份时间t工业总产值Y(亿元)职工人数L(万人)固定资产K(亿元)197813289.1831392225.70197923581.2632082376.34198033782.1733342522.81198143877.8634882700.90198254151.2535822902.19198364541.0536323141.76198474946.1136693350.95198585586.1438153835.79198695931.3639554302.251987106601.6040864786.051988117434.0642295251.901989127721.0142735808.711990137949.5543646365.791991148634.8044727071.351992159705.5245217757.2519931610261.6544988628.7719941710928.6645459374.34【实验步骤】一、建立多元线性回归模型(一)建立包括时间变量的三元线性回归模型;在命令窗口依次键入以下命令即可:⒈建立工作文件:CREATEA197819942⒉输入统计资料:DATAYLK⒊生成时间变量t:GENRT=@TREND(77)⒋建立回归模型:LSYCTLK则生产函数的估计结果及有关信息如图3-1所示。图3-1我国国有独立核算工业企业生产函数的估计结果此时,我国国有独立工业企业的生产函数为:ˆ675.320877.67890.66670.7764ytLK(模型1)(-0.2518)(0.6715)(0.7810)(7.4327)220.99580.99481018.551RRF模型的计算结果表明,我国国有独立核算工业企业的劳动力边际产出为0.6667,资金的边际产出为0.7764,技术进步的影响使工业总产值平均每年递增77.6789亿元。回归系数的符号和数值是较为合理的。220.99580.9948RR,说明模型有很高的拟合优度。F检验也是高度显著的,说明职工人数L、资金K和时间变量t对工业总产值的总影响是显著的。从图3-1看出,解释变量资金K的t统计量值为7.4327,表明资金对企业产出的影响是显著的。但是模型中其他变量(包括常数项)的t统计量值都较小,未通过检验。因此,需要对以上三元线性回归模型做适当的调整,按照统计检验程序,一般应先剔除t统计量最小的变量(即时间变量t)而重新建立模型。3(二)建立剔除时间变量的二元线性回归模型;命令:LSYCLK则生产函数的估计结果及有关信息如图3-2所示。图3-2剔除时间变量后的估计结果此时,我国国有独立工业企业的生产函数为:ˆ2387.2691.20850.8345yLK(模型2)(-2.9224)(4.4265)(14.5329)220.99560.99501589.953RRF从图3-2的结果看出,回归系数的符号和数值也是合理的。劳动力边际产出为1.2085,资金的边际产出为0.8345,表明这段时期劳动力投入的增加对我国国有独立核算工业企业产出的影响较为明显。模型2的拟合优度较模型1并无多大变化,F检验也是高度显著的。但是,解释变量、常数项的t检验值都比较大,显著性概率都小于0.05,因此模型2较模型1更为合理。(三)建立非线性回归模型——C-D生产函数。C-D生产函数为:YALKe,对于此类非线性函数,可以采用以下两种方式建立模型。方式1:转化成线性模型进行估计;在模型两端同时取对数,得:lnlnlnlnyALK4在EViews软件的命令窗口中依次键入以下命令:GENRLNY=log(Y)GENRLNL=log(L)GENRLNK=log(K)LSLNYCLNLLNK则估计结果如图3-3所示。图3-3线性变换后的C-D生产函数估计结果即可得到C-D生产函数的估计式为:ˆln1.95130.6045ln0.6737lnyLK(模型3)(-1.1717)(2.2166)(9.3101)220.99580.99511641.407RRF即0.60450.6737ˆ0.1424yLK从模型3看出,资本与劳动的产出弹性都是在0到1之间,模型的经济意义合理,而且拟合优度较模型2还略有提高,解释变量都通过了显著性检验。方式2:迭代估计非线性模型,迭代过程中可以作如下控制:⑴在工作文件窗口中双击序列C,输入参数的初始值;⑵在方程描述框中点击Options,输入精度控制值。控制过程:①参数初值:0,0,0;迭代精度:10-3;5则生产函数的估计结果如图3-4所示。图3-4生产函数估计结果此时,函数的表达式为:1.05441.04295896.888yLK(模型4)(0.3048)(-2.0633)(8.6058)220.98340.9811RR可以看出,模型4中劳动力弹性α=-1.0544,资金的产出弹性β=1.0429,很显然模型的经济意义不合理,因此,该模型不能用来描述经济变量间的关系。而且模型的拟合优度也有所下降,解释变量L在5%的显著性水平下并不显著,所以应舍弃该模型。②参数初值:0,0,0;迭代精度:10-5;则生产函数的估计结果如图3-5所示。6图3-5生产函数估计结果此时,生产函数的形式为:0.61100.66490.1450yLK(模型5)(0.5808)(2.2653)(10.4798)220.99570.9950RR从模型5中看出,迭代414次收敛,资本与劳动的产出弹性都是在0到1之间,模型的经济意义合理,220.99570.9950RR,具有很高的拟合优度,解释变量都通过了显著性检验。将模型5与通过方式1所估计的模型3比较,可见两者是相当接近的。③参数初值:1,1,1;迭代精度:10-57图3-6生产函数估计结果此时,迭代129次后收敛,估计结果与模型5相同。比较方式2的不同控制过程可见,迭代估计过程的收敛性及收敛速度与参数初始值的选取密切相关。若选取的初始值与参数真值比较接近,则收敛速度快;反之,则收敛速度慢甚至发散。因此,估计模型时最好依据参数的经济意义和有关先验信息,设定好参数的初始值。二、比较、选择最佳模型估计过程中,对每个模型检验以下内容,以便选择出一个最佳模型:㈠回归系数的符号及数值是否合理;㈡模型的更改是否提高了拟合优度;㈢模型中各个解释变量是否显著;㈣残差分布情况以上比较模型的㈠、㈡、㈢步在步骤一中已有阐述,模型1中除了解释变量K之外,其余变量均未通过变量显著性检验,因此舍弃该模型。模型4的表达式说明了模型的经济意义不合理,不能用于描述我国国有工业企业的生产情况,也应舍弃此模型。模型2、模型3、模型5都具有合理的经济意义,都通过了t检验和F检验,拟合优度非常接近,理论上讲都可以描述资本、劳动的投入与产出的关系。现分析这3个不同模型的残差分布情况。分别在模型2、3、5的估计方程窗口中点击View/Actual,Fitted,Residual/Actual,Fitted,ResidualTable(图3-7),可以得到各个模型相应的残差分布表(图3-8至图3-10)。从图3-8至图3-10看出,三个模型中,模型3的近期误差是最小的,并且拟合优度也是三个模型中最高的,故选择模型3作为我国国有工业企业生产函数。8图3-7图3-8模型2的残差图图3-9模型3的残差图9图3-10模型5的残差分析