实验三用FFT对信号作频谱分析一、实验目的:学习用FFT对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便正确应用FFT。二、实验内容:(1)对以下序列进行谱分析:程序:x1n=[ones(1,4)];M=8;xa=1:(M/2);xb=(M/2):-1:1;x2n=[xa,xb];x3n=[xb,xa];X1k8=fft(x1n,8);X1k16=fft(x1n,16);X2k8=fft(x2n,8);X2k16=fft(x2n,16);X3k8=fft(x3n,8);X3k16=fft(x3n,16);subplot(2,2,1);stem(X1k8);title('(1a)8点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X1k8))])subplot(2,2,3);stem(X1k16);title('(1b)16点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X1k16))])figure(2)subplot(2,2,1);stem(X2k8);title('(2a)8点DFT[x_2(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X2k8))])subplot(2,2,2);stem(X2k16);title('(2b)16点DFT[x_2(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X2k16))])subplot(2,2,3);stem(X3k8);title('(3a)8点DFT[x_3(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X3k8))])subplot(2,2,4);stem(X3k16);title('(3b)16点DFT[x_3(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X3k16))])结果如图1所示:图1(2)程序:N=8;n=0:N-1;x4n=cos(pi*n/4);x5n=cos(pi*n/4)+cos(pi*n/8);X4k8=fft(x4n);X5k8=fft(x5n);N=16;n=0:N-1;x4n=cos(pi*n/4);x5n=cos(pi*n/4)+cos(pi*n/8);X4k16=fft(x4n);X5k16=fft(x5n);figure(3)subplot(2,2,1);stem(X4k8);title('(4a)8点DFT[x_4(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X4k8))])subplot(2,2,3);stem(X4k16);title('(4b)16点DFT[x_4(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X4k16))])subplot(2,2,2);stem(X5k8);title('(5a)8点DFT[x_5(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X5k8))])subplot(2,2,4);stem(X5k16);title('(5b)16点DFT[x_5(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X5k16))])结果如图2所示:图2(3)程序:Fs=64;T=1/Fs;N=16;n=0:N-1;x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T);X6k16=fft(x6nT);X6k16=fftshift(X6k16);Tp=N*T;F=1/Tp;k=-N/2:N/2-1;fk=k*F;subplot(3,1,1);stem(fk,abs(X6k16),'.');boxontitle('(6a)16点|DFT[x_6(nT)]|');xlabel('f(Hz)');ylabel('幅度');axis([-N*F/2-1,N*F/2-1,0,1.2*max(abs(X6k16))])N=32;n=0:N-1;x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T);X6k32=fft(x6nT);X6k32=fftshift(X6k32);Tp=N*T;F=1/Tp;k=-N/2:N/2-1;fk=k*F;subplot(3,1,2);stem(fk,abs(X6k32),'.');boxontitle('(6b)32点|DFT[x_6(nT)]|');xlabel('f(Hz)');ylabel('幅度');axis([-N*F/2-1,N*F/2-1,0,1.2*max(abs(X6k32))])N=64;n=0:N-1;x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T);%对x6(t)64点采样X6k64=fft(x6nT);X6k64=fftshift(X6k64);Tp=N*T;F=1/Tp;k=-N/2:N/2-1;fk=k*F;subplot(3,1,3);stem(fk,abs(X6k64),'.');boxontitle('(6a)64点|DFT[x_6(nT)]|');xlabel('f(Hz)');ylabel('幅度');axis([-N*F/2-1,N*F/2-1,0,1.2*max(abs(X6k64))])结果如图3所示:图3三、实验总结:因为用FFT对信号作频谱分析是学习数字信号处理的重要内容。在本次实验中,进行谱分析的信号是模拟信号和时域离散信号,对信号进行谱分析的重要问题是频谱分辨率D和分析误差。对于频谱分辨率D,其直接和FFT的变换区间N有关,因为FFT能够实现的频率分辨率是N/2,因此要求DN/2。可以根据此式选择FFT的变换区间N。而误差主要来自于用FFT作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N较大时离散谱的包络才能逼近于连续谱,因此N要适当选择大一些。周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT,得到的离散谱才能代表周期信号的频谱。对模拟信号进行谱分析时,首先要按照采样定理将其变成时域离散信号。如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。本次实验中,也遇到了一些问题,比如:离散函数的绘制函数选择等。这些通过在网上查阅相关资料解决。