姓名:学号:得分:实验三线性系统时域响应分析一、实验目的1.熟练掌握step()函数和impulse()函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。2.通过响应曲线观测特征参量和n对二阶系统性能的影响。3.熟练掌握系统的稳定性的判断方法。二、基础知识及MATLAB函数1.基础知识时域分析法直接在时间域中对系统进行分析,可以提供系统时间响应的全部信息,具有直观、准确的特点。为了研究控制系统的时域特性,经常采用瞬态响应(如阶跃响应、脉冲响应和斜坡响应)。本次实验从分析系统的性能指标出发,给出了在MATLAB环境下获取系统时域响应和分析系统的动态性能和稳态性能的方法。用MATLAB求系统的瞬态响应时,将传递函数的分子、分母多项式的系数分别以s的降幂排列写为两个数组num、den。由于控制系统分子的阶次m一般小于其分母的阶次n,所以num中的数组元素与分子多项式系数之间自右向左逐次对齐,不足部分用零补齐,缺项系数也用零补上。用MATLAB求控制系统的瞬态响应阶跃响应求系统阶跃响应的指令有:step(num,den)时间向量t的范围由软件自动设定,阶跃响应曲线随即绘出step(num,den,t)时间向量t的范围可以由人工给定(例如t=0:0.1:10)[y,x]=step(num,den)返回变量y为输出向量,x为状态向量在MATLAB程序中,先定义num,den数组,并调用上述指令,即可生成单位阶跃输入信号下的阶跃响应曲线图。考虑下列系统:2()25()425CsRsss该系统可以表示为两个数组,每一个数组由相应的多项式系数组成,并且以s的降幂排列。则matlab的调用语句:num=[0025];%定义分子多项式den=[1425];%定义分母多项式step(num,den)%调用阶跃响应函数求取单位阶跃响应曲线grid%画网格标度线xlabel(‘t/s’),ylabel(‘c(t)’)%给坐标轴加上说明title(‘Unit-stepRespinseofG(s)=25/(s^2+4s+25)’)%给图形加上标题名则该单位阶跃响应曲线如图2-1所示:若要绘制系统t在指定时间(0-10s)内的响应曲线,则用以下语句:num=[0025];den=[1425];t=0:0.1:10;step(num,den,t)即可得到系统的单位阶跃响应曲线在0-10s间的部分,如图2-2所示。脉冲响应①求系统脉冲响应的指令有:impulse(num,den)时间向量t的范围由软件自动设定,阶跃响应曲线随即绘出impulse(num,den,t)时间向量t的范围可以由人工给定(例如t=0:0.1:10)[y,x]=impulse(num,den)返回变量y为输出向量,x为状态向量[y,x,t]=impulse(num,den,t)向量t表示脉冲响应进行计算的时间例:试求下列系统的单位脉冲响应:2()1()()0.21CsGsRsss在matlab中可表示为num=[001];den=[10.21];impulse(num,den)gridtitle(‘Unit-impulseResponseofG(s)=1/(s^2+0.2s+1)’)由此得到的单位脉冲响应曲线如图2-3所示。②求脉冲响应的另一种方法应当指出,当初始条件为零时,G(s)的单位脉冲响应与sG(s)的单位阶跃响应相同。考虑在上例题中求系统的单位脉冲响应,因为对于单位脉冲输入量,R(s)=1所以22()11()()()0.210.21CssCsGsRssssss因此,可以将G(s)的单位脉冲响应变换成sG(s)的单位阶跃响应。向MATLAB输入下列num和den,给出阶跃响应命令,可以得到系统的单位脉冲响应曲线如图2-4所示。num=[010];den=[10.21];step(num,den)图2-1二阶系统的单位阶跃响应图2-2定义时间范围的单位阶跃响应gridtitle(‘Unit-stepResponseofsG(s)=s/(s^2+0.2s+1)’)斜坡响应MATLAB没有直接调用求系统斜坡响应的功能指令。在求取斜坡响应时,通常利用阶跃响应的指令。基于单位阶跃信号的拉氏变换为1/s,而单位斜坡信号的拉氏变换为1/s2。因此,当求系统G(s)的单位斜坡响应时,可以先用s除G(s),再利用阶跃响应命令,就能求出系统的斜坡响应。例如,试求下列闭环系统的单位斜坡响应。11)()(2sssRsC对于单位斜坡输入量,R(s)=1/s2,因此ssssssssC1)1(1111)(222在MATLAB中输入以下命令,得到如图2-5所示的响应曲线:num=[0001];den=[1110];step(num,den)title(‘Unit-RampResponseCuveforSystemG(s)=1/(s^2+s+1)’)2.特征参量和n对二阶系统性能的影响图2-3二阶系统的单位脉冲响应图2-4单位脉冲响应的另一种表示法图2-5单位斜坡响应标准二阶系统的闭环传递函数为:222()()2nnnCsRsss二阶系统的单位阶跃响应在不同的特征参量下有不同的响应曲线。对二阶系统性能的影响设定无阻尼自然振荡频率1(/)nrads,考虑5种不同的值:=0,0.25,0.5,1.0和2.0,利用MATLAB对每一种求取单位阶跃响应曲线,分析参数对系统的影响。为便于观测和比较,在一幅图上绘出5条响应曲线(采用“hold”命令实现)。num=[001];den1=[101];den2=[10.51];den3=[111];den4=[121];den5=[141];t=0:0.1:10;step(num,den1,t)gridtext(4,1.7,'Zeta=0');holdstep(num,den2,t)text(3.3,1.5,'0.25')step(num,den3,t)text(3.5,1.2,'0.5')step(num,den4,t)text(3.3,0.9,'1.0')step(num,den5,t)text(3.3,0.6,'2.0')title('Step-ResponseCurvesforG(s)=1/[s^2+2(zeta)s+1]')由此得到的响应曲线如图2-6所示。n对二阶系统性能的影响同理,设定阻尼比0.25时,当n分别取1,2,3时,利用MATLAB求取单位阶跃响应曲线,分析参数n对系统的影响。num1=[001];den1=[10.51];t=0:0.1:10;step(num1,den1,t);grid;holdontext(3.1,1.4,’wn=1’)num2=[004];den2=[114];图2-6不同时系统的响应曲线图2-7不同时系统的响应曲线step(num2,den2,t);holdontext(1.7,1.4,’wn=2’)num3=[009];den3=[11.59];step(num3,den3,t);holdontext(0.5,1.4,’wn=3’)由此得到的响应曲线如图2-7所示。3.系统稳定性判断1)直接求根判稳roots()控制系统稳定的充要条件是其特征方程的根均具有负实部。因此,为了判别系统的稳定性,就要求出系统特征方程的根,并检验它们是否都具有负实部。MATLAB中对多项式求根的函数为roots()函数。若求以下多项式的根43210355024ssss,则所用的MATLAB指令为:roots([1,10,35,50,24])ans=-4.0000-3.0000-2.0000-1.0000特征方程的根都具有负实部,因而系统为稳定的。三、实验内容1.观察函数step()和impulse()的调用格式,假设系统的传递函数模型为243237()4641ssGsssss可以用几种方法绘制出系统的阶跃响应曲线?试分别绘制。2.对典型二阶系统222()2nnnGsss1)分别绘出2(/)nrads,分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数对系统的影响。2)绘制出当=0.25,n分别取1,2,4,6时单位阶跃响应曲线,分析参数n对系统的影响。3.系统的特征方程式为432235100ssss,判别该系统的稳定性。4.单位负反馈系统的开环模型为2()(2)(4)(625)KGsssss分别判断系统的稳定性,并求出使得闭环系统稳定的K值范围。四、实验报告1.根据内容要求,写出调试好的MATLAB语言程序,及对应的MATLAB运算结果。2.记录各种输出波形,根据实验结果分析参数变化对系统的影响。3.总结判断闭环系统稳定的方法,说明增益K对系统稳定性的影响。4.写出实验的心得与体会。五、预习要求1.预习实验中基础知识,运行编制好的MATLAB语句,熟悉MATLAB指令及step()和impulse()函数。2.结合实验内容,提前编制相应的程序。3.思考特征参量和n对二阶系统性能的影响。4.熟悉闭环系统稳定的充要条件及学过的稳定判据。实验结果及分析:三:1.可以用两种方法绘制系统的阶跃响应曲线。(1)用函数step()绘制MATLAB语言程序:num=[00137];den=[14641];step(num,den);grid;xlabel('t/s');ylabel('c(t)');title('stepresponse');MATLAB运算结果:(2)用函数impulse()绘制MATLAB语言程序:num=[000137];den=[146410];impulse(num,den);grid;xlabel('t/s');ylabel('c(t)');title('stepresponse');MATLAB运算结果:2.(1)2(/)nrads,分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线的绘制:MATLAB语言程序:num=[004];den1=[104];den2=[114];den3=[124];den4=[144];den5=[184];t=0:0.1:10;step(num,den1,t);grid;text(2,1.8,'zeta=0');holdcurrentplotheldstep(num,den2,t);step(num,den3,t)step(num,den4,t)step(num,den5,t)gtext('Zata=0')gtext('Zata=0.25')gtext('Zata=0.5')gtext('Zata=1.0')gtext('Zata=2.0')实验结果分析:从上图可以看出,保持ωn=2rad/s不变,ζ依次取值0,0.25,0.5,1.0和2.0时,系统逐渐从欠阻尼系统过渡到临界阻尼系统再到过阻尼系统,系统的超调量随ζ的增大而减小,上升时间随ζ的增大而变长,系统的响应速度随ζ的增大而变慢,系统的稳定性随ζ的增大而增强。(2)=0.25,n分别取1,2,4,6时单位阶跃响应曲线的绘制:MATLAB语言程序:num1=[001];den1=[10.51];t=0:0.1:15;step(num1,den1,t);grid;holdnum2=[004];den2=[114];t=0:0.1:15;step(num2,den2,t);grid;num3=[0016];den3=[1216];t=0:0.1:15;step(num3,den3,t);grid;num4=[0036];den4=[1336];t=0:0.1:15;step(num4,den4,t);grid;Currentplotheldgtext('Wn=1')gtext('Wn=2')gtext('Wn=4')gtext('Wn=6')实验结果分析:从上图可以看出,保持ζ