导热油特点:导热油具有抗热裂化和化学氧化的性能,传热效率好,散热快,热稳定性很好。导热油作为工业油传热介质具有以下特点:在几乎常压的条件下,可以获得很高的操作温度。即可以大大降低高温加热系统的操作压力和安全要求,提高了系统和设备的可靠性;可以在更宽的温度范围内满足不同温度加热、冷却的工艺需求,或在同一个系统中用同一种导热油同时实现高温加热和低温冷却的工艺要求。即可以降低系统和操作的复杂性;省略了水处理系统和设备,提高了系统热效率,减少了设备和管线的维护工作量。可以减少加热系统的初投资和操作费用;在事故原因引起系统泄漏的情况下,导热油与明火相遇时有可能发生燃烧,这是导热油系统与水蒸汽系统相比所存在的问题。但在不发生泄漏的条件下,由于导热油系统在低压条件下工作,故其操作安全性要高于水和蒸汽系统。导热油与另一类高温传热介质熔盐相比,在操作温度为400℃以上时,熔盐较导热油在传热介质的价格及使用寿命方面具有绝对的优势,但在其它方面均处于明显劣势,尤其是在系统操作的复杂性方面。导热油化学性质较稳定,不像轻质油那么容易着火燃烧。从使用及安全角度看,其主要特性是:1.在许用温度范围内,热稳定性较好,结焦少,使用寿命较长。2.在许用温度范围内,导热性能、流动性能及可泵性能良好。3.低毒无味,不腐蚀设备,对环境影响很小。4.凝固点较低,沸点较高,低沸点组分含量较少。在许用温度范围内,蒸汽压不高,蒸发损失少。5.温度高于70℃时,与空气接触会被强烈氧化,其受热工作系统需密封,而只允许其在70℃以下的温度与空气接触。6.受热后体积膨胀显著,膨胀率远大于水。温升100℃,体积膨胀率可达8%~10%。7.过热时会发生裂解或缩合,在容器、管道中结焦或积碳。8.混入水或低沸点组分时,受热后蒸气压会显著提高。9.闪点、燃点及自燃点均较高,在许用温度及密闭状态下不会着火燃烧。10.根据用户多居住的地区和设备作业环境,建议选择适宜的低温性能的导热油。主要性能:热稳定性是热传导液最重要的使用性能。热稳定性不同,其使用中热裂解和聚合的程度也不同。氧化安定性是热传导液另一项重要的使用性能。低挥发性热传导液采用初馏点表示其挥发性。我国导热油产品执行GB23971-2009“导热油”标准矿物性导热油的报废指标矿物型热传导液报废有以下四方面指标:1、粘度变化大于±20%,应引起注意;2、闪点变化大于±15%,应引起注意;3、酸值大于0.5mgKOH/g,应引起注意;4、残炭达到1.5%,应引起注意。在对运行中的热传导液进行测试时发现,粘度因受分解和聚合的共同影响,变化并不规律;酸值在氧化初期逐渐增大而后反而下降;闪点是说明油品运行安全性的重要指标;残炭则一直呈上升趋势,开始缓慢,而后数值增长明显加快。总之,对上述指标不能孤立地去看其中某一项,必须综合分析,做出判断。1、馏程馏程的变化表明热传导液分子质量的变化,国外采用气相色谱法,经与新油的馏程进行比较,以高沸物和低沸物含量表明热传导液发生裂解和聚合的程度。2、粘度粘度的变化表明热传导液分子质量和结构的变化。裂解使粘度下降,而聚合和氧化使粘度上升。这些变化对高温范围的粘度影响很小,但对低温粘度影响较大,因此对寒冷地区和伴有冷却的操作工艺来说,低温粘度增长应引起重视。3、酸值酸值的变化表明热传导液的老化程度。酸值上升通常是油品发生氧化所致,主要发生在膨胀槽不采用氮封的系统中。但当老化到一定程度时,可溶性有机酸可能进一步聚合生成高分子氧化产物,这时酸值又可能下降。因此,要注意从酸值的变化趋势判断油品的老化程度。4、残炭残炭是运行中的热传导液经蒸发和裂解后留下的残炭量。在运行中残炭量往往随时间呈不断上升的趋势,可说明高分子炭状沉积物形成的倾向和老化的程度。国外常测定丙酮或戊烷不溶物,包括油不溶物和因裂解、聚合而产生的树脂状物。因该方法未经蒸发和热解,可准确说明油品中不溶物的含量。5、闪点闪点是主要的安全性指标,说明高挥发性产物和可燃性气体形成的可能性。闪点下降过多可能成为事故的隐患。一般通过以上检验项目对热传导液的变质情况进行综合判断。怎样防止导热油高温裂解?保持进导热油炉流量恒定--这是防止导热油高温热裂解的最有效措施。在导热油炉运转中,恒定的导热油进炉流量最为重要。它可以恒定的持续的带走炉子燃烧给予的热量,炉管不会局部过热。如果进炉子流量降低减少,燃烧的热量就会有一部分带不走,炉管就会产生局部过热,靠近炉管管璧膜温就会升高,当膜温升高到导热油破坏温度(即热降解温度)时,导热油就立即遭到破坏,导热油分子就会断链,油品质量就会降低,产生轻组分或重组分。所以,保持导热油长期运转,延长寿命的第二位重要措施就是恒定导热油流量。