微积分课后习题答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

习题1—1解答1.设yxxyyxf),(,求),(1),,(),1,1(),,(yxfyxxyfyxfyxf解yxxyyxf),(;xxyyyxfyxyxxyfxyxyyxf222),(1;),(;1)1,1(2.设yxyxflnln),(,证明:),(),(),(),(),(vyfuyfvxfuxfuvxyf),(),(),(),(lnlnlnlnlnlnlnln)ln)(lnln(ln)ln()ln(),(vyfuyfvxfuxfvyuyvxuxvuyxuvxyuvxyf3.求下列函数的定义域,并画出定义域的图形:(1);11),(22yxyxf(2);)1ln(4),(222yxyxyxf(3);1),(222222czbyaxyxf(4).1),,(222zyxzyxzyxf解(1)1,1),{(yxyxD(2)xyyxyxD4,10),(222yx11-1-1Oyx11-1-1O(3)1),(222222czbyaxyxD(4)1,0,0,0),,(222zyxzyxzyxD4.求下列各极限:(1)22101limyxxyyx=11001(2)2ln01)1ln(ln(lim022)01eyxexyyx(3)41)42()42)(42(lim42lim0000xyxyxyxyxyxyyxyx(4)2)sin(lim)sin(lim0202xxyxyyxyyxyx5.证明下列极限不存在:(1);lim00yxyxyx(2)2222200)(limyxyxyxyx(1)证明如果动点),(yxP沿xy2趋向)0,0(则322limlim0020xxxxyxyxxxyx;如果动点),(yxP沿yx2趋向)0,0(,则33limlim0020yyyxyxyyxyyx-a-bcOzabyx1Oz11所以极限不存在。(2)证明如果动点),(yxP沿xy趋向)0,0(则1lim)(lim4402222200xxyxyxyxxxyx;如果动点),(yxP沿xy2趋向)0,0(,则044lim)(lim244022222020xxxyxyxyxxxyx所以极限不存在。6.指出下列函数的间断点:(1)xyxyyxf22),(2;(2)yxzln。解(1)为使函数表达式有意义,需022xy,所以在022xy处,函数间断。(2)为使函数表达式有意义,需yx,所以在yx处,函数间断。习题1—21.(1)xyyxz,21xyyxz,21yxxyz.(2))]2sin()[cos()sin()cos(2)cos(xyxyyxyxyyxyyxz)]2sin()[cos()sin()cos(2)cos(xyxyxxyxyxxyxyz(3)121)1()1(yyxyyyxyyxz,lnz=yln(1+xy),两边同时对y求偏导得,1)1ln(1xyxyxyyzz]1)1[ln()1(]1)1[ln(xyxyxyxyxyxyxyzyzy;(4))(2213323yxxyxxyxxyxz,;11322yxxyxxyz(5)xxzyzuxxzyuxzyxuzyzyzyln,ln1,21;(6)zzyxyxzxu21)(1)(,zzyxyxzyu21)(1)(,zzyxyxyxzu2)(1)ln()(;2.(1)0,1,0,,yyxyxxyxzzzxzyz;(2)),(2sin),(2sinbyaxbzbyaxazyx)(2cos2),(2cos2),(2cos222byaxbzbyaxabzbyaxazyyxyxx.32222,2,2xyzfzxyfxzyfzyx,,2,2,2zfxfzfyzxzxx0)0,1,0(,2)2,0,1(,2)1,0,0(yzxzxxfff.4)2(2cos),2(2cos2),2(2sin),2(2sin2txztxztxztxzttxttx0)2(2cos2)2(2cos22txtxzzxttt.5.(1)xyxexyz2,xyyexz1,dzdxexyxy2dyexxy1;(2))ln(2122yxz,22yxxzx,22yxyzy,dyyxydxydz2222xx;(3)2222)(1yxyxyxyzx,222)(11yxxxyxzy,22yxxdyydxdz;(4),1yzxyzxuxzxuyzyln,xyxuyzzln,duxdzyxxdyzxdxyzxyzyzyzlnln1.6.设对角线为z,则,22yxz22yxxzx,22yxyzy,dz22yxydyxdx当1.0,05.0,8,6yxyx时,2286)1.0(805.06dzz=-0.05(m).7.设两腰分别为x、y,斜边为z,则,22yxz22yxxzx,22yxyzy,dz22yxydyxdx,设x、y、z的绝对误差分别为x、y、z,当1.0,1.0,24,7yxyxyx时,2524722z222471.0241.07dzz=0.124,z的绝对误差124.0zz的相对误差zz%496.025124.0.8.设内半径为r,内高为h,容积为V,则hrV2,rhVr2,2rVh,dhrrhdrdV22,当1.0,1.0,20,4hrhr时,)(264.551.0414.31.020414.3232cmdVV.习题1—31.dxdzzfdxdyyfdxdxxfdxdu2)(1zxyzyaxaezxyzx2)(122)(1zxyzxy)1(2axa=222)]1(2[yxzaxaxyaxzzy=axaxexaxxaeax22422)1()1()1(.2.xfxfxz=4432224arcsin11yxxyxx=))(1()ln(1arcsin422224444223yxyxyxxyxyxxyfyfyz=4432224arcsin11yxyyxy=))(1()ln(1arcsin422224444223yxyxyxyyxyxy.3.(1)xu=212fyexfxy,yu=212fxeyfxy.(2)xu=11fy,yu=2121fzfyx,zu=22fzy.(3)xu=321yzfyff,yu=32xzfxf,zu=3xyf.(4)xu=3212fyfxfyu=3212fxfyf,zu=3f.4.(1)1yfxz,21fxfyz,11222fyxz,12111121112)(yfxyfffxfyfyxz,2221121122)(fxffxfxyz=22121122fxffx(2)2122xyffyxz,2212fxxyfyz,2222123114222212212112222442)2(22)2(fyxfxyfyyfxyffyxyyfxyffyyxz.1222223113212222121221121252222)2(22)2(2fyxyfxfxyxfyffxxyfxyxffxxyfyyfyxz2241231122122221212211122442)2()2(22fxyfxfyxxffxxyfxfxxyfxyxfyz5yuxutyyutxxutuyuxusyyusxxusu2123,2321,222)(4323)(41)(yuyuxuxusu,222)(4123)(43)(yuyuxuxutu,2222)()()()(yuxutusu.6(1)设)(),,(zyxezyxzyxF,)(1zyxxeF,)(1zyxyeF,)(1zyxzeF,1zxFFxz,1zyFFyzxzyxyxzyxyxzyxxFyxzyxzzyxFx2))(21(sectan,tan),,()2(23222222222222222设=222222tanyxxzyxzyxx222secyxz,)2())(21(sectan2322222222222yzyxyxzyxyxzyxyFy=222222tanyxyzyxzyxy222secyxz,1zF22222secyxzyx221yx=222tanyxz,xz)cot1(cot222222222yxzyxxzyxzyxxFFzx,yz).cot1(cot222222222yxzyxyzyxzyxyFFzy(3)设xyzzyxzyxF22),,(,xyzFx1yxzFy2zxyFx1,xzzxFF=xyxyzxyzyz,yzzyFF=xyxyzxyzxz2.(4)设yzzxyzzxzyxFlnlnln),,(,yFzFyx1,1zzxFz12,xzzxzFFzx,yz)(2zxyzFFzy,7.设)32sin(232),,(zyxzyxzyxF,),32cos(21zyxFx)32cos(42zyxFy,)32cos(63zyxFz,xz31zxFF,yz32zyFF,xzyz1.8.设2121,,),,(),,(baFcFcFbzcyazcxzyxFzyx,xz211bacFFzx,yz,212bacFFzyxzacyzb.9.(1)方程两边同时对x求导得,0642,22dxdzzdxdyyxdxdyyxdxdz解之得13,)13(2)16(zxdxdyzyzxdxdy(2)方程两边同时对z求导得0222,01zdzdyydzdxxdzdydzdx解之得.,yxxzdzdyyxzydzdx(3)方程两边同时对x求偏导得,sincos0,cossin1xvvuvxuxuexvvuvxuxueuu解之得.]1)cos(sin[cos,1)cos(sinsinvveuevxvvvevxuuuu同理方程两边同时对y求偏导得,sincos1,cossin0yv

1 / 11
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功