1专题1代数式的有关求值问题【考法综述】代数式的求值问题在中考中出现的频率较高,主要以选择、填空的形式出现,并且经常涉及到实数的性质、整式和分式的求值问题、数字和图形的变化规律等,常用到的数学方法有:整体思想、归纳思想、数形结合思想.1.尾数的特征问题:尾数的问题,经常以指数的形式出现,与高中所学的幂指数和等差数列、等比数列有较强的联系,因此在中考中经常出现,解决此类问题要注意进行观察,找到规律.2.整式的求值问题:给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算;另一种情况是利用因式分解、配方法等进行正确处理.3.数字的变化类:数字的变化规律是找规律中的一种,往往给出一组数、式子或条件,要求学生通过阅读、观察、分析,猜想来探索规律,体现了“从特殊到一般”的数学思想方法.4.图形的变化类:图形的变化规律题目要求学生能根据图的变化,找到规律,根据图形的规律利用相关的代数式知识进行求解.5.列代数式解决实际问题:把问题中与数量有关的词语,找到等量关系,用含有数字、字母和运算符号的式子表示出来,列代数式五点注意:①仔细辨别词义;②分清数量关系;③注意运算顺序;④规范书写格式;⑤正确进行代换.6.分式的求值问题:分式求值历来是各级考试中出现频率较高的题型,而条件分式求值是较难的一种题型,在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径【典例剖析】例1.【2018年中考湖北省宜昌市】1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则a,b,c的值分别为()2A.a=1,b=6,c=15B.a=6,b=15,c=20C.a=15,b=20,c=15D.a=20,b=15,c=6&变式训练&变式1.1计算:21﹣1=1,22﹣1=3,23﹣1=7,24﹣1=15,25﹣1=31,…归纳各计算结果中的个位数字规律,猜测22014﹣1的个位数字是()A.1B.3C.7D.5变式1.2【2018年湖南省张家界市中考】观察下列算式:,,,,,,,…,则…的未位数字是()A.8B.6C.4D.0例2.【2018年临安市中考】已知:2+=22×,3+=32×,4+=42×,5+=52×,…,若10+=102×符合前面式子的规律,则a+b=_____.变式2.1【2018年贵州省黔东南中考】根据下列各式的规律,在横线处填空:,,,…,﹣_____=.变式2.2已知y=ax5+bx3+cx﹣5.当x=﹣3时,y=7,那么,当x=3时,y=()A.﹣3B.﹣7C.﹣17D.7例3.一列数a1,a2,a3,…满足条件:a1=,an=(n≥2,且n为整数),则a2017=.&变式训练&变式3.1【河北省2018年中考】若2n+2n+2n+2n=2,则n=()3A.﹣1B.﹣2C.0D.变式3.2已知“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…,若公式Cnm=(n>m),则C125+C126=()A.B.C.D.变式3.3已知三角形的三边长分别为a、b、c,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦(Heron,约公元50年)给出求其面积的海伦公式S=,其中p=;我国南宋时期数学家秦九韶(约1202﹣1261)曾提出利用三角形的三边求其面积的秦九韶公式S=,若一个三角形的三边长分别为2,3,4,则其面积是()A.B.C.D.[来源:学*科*网]例4.设△ABC的面积为1.如图1,分别将AC,BC边2等分,D1,E1是其分点,连接AE1,BD1交于点F1,得到四边形CD1F1E1,其面积S1=.如图2,分别将AC,BC边3等分,D1,D2,E1,E2是其分点,连接AE2,BD2交于点F2,得到四边形CD2F2E2,其面积S2=;如图3,分别将AC,BC边4等分,D1,D2,D3,E1,E2,E3是其分点,连接AE3,BD3交于点F3,得到四边形CD3F3E3,其面积S3=;…按照这个规律进行下去,若分别将AC,BC边(n+1)等分,…,得到四边形CDnFnEn,其面积Sn=.&变式训练&变式4.1【2018年中考山东省烟台市】如图所示,下列图形都是由相同的玫瑰花按照一定的4规律摆成的,按此规律摆下去,第n个图形中有120朵玫瑰花,则n的值为()A.28B.29C.30D.31变式4.2【2018年中考湖北省随州市】我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如1,3,6,10…)和“正方形数”(如1,4,9,16…),在小于200的数中,设最大的“三角形数”为m,最大的“正方形数”为n,则m+n的值为()A.33B.301C.386D.571例5.如图,一个瓶身为圆柱体的玻璃瓶内装有高a厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h厘米,则瓶内的墨水的体积约占玻璃瓶容积的()A.B.C.D.&变式训练&变式5.1一艘轮船往返甲、乙两港之间,第一次往返航行时,水流速度为a千米/时,第二次往返航行时,正遇上发大水,水流速度为b千米/时(b>a),已知该船在两次航行中的静水速度相同,则该船这两次往返航行所用时间的关系是()A.第一次往返航行用的时间少B.第二次往返航行用的时间少C.两种情况所用时间相等D.以上均有可能例6.【2018年山东省菏泽市中考】若,,则代数式的值5为__________.&变式训练&变式6.1【四川省内江市2018年中考】已知:﹣=,则的值是()变式6.2若x+=3,求的值是()A.B.C.D.【实战演练】1.【湖北省孝感市2018年中考数学试题】已知,,则式子的值是()A.48B.C.16D.122.【河北省2018年中考数学试卷】老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁3.【山东省聊城市2018年中考数学试卷】下列计算正确的是()A.B.C.D.4.【湖北省武汉市2018年中考数学试卷】将正整数1至2018按一定规律排列如下表:6平移表中带阴影的方框,方框中三个数的和可能是()A.2019B.2018C.2016D.20135.【浙江省宁波市2018年中考数学试卷】在矩形ABCD内,将两张边长分别为a和的正方形纸片按图1,图2两种方式放置图1,图2中两张正方形纸片均有部分重叠,矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为,图2中阴影部分的面积为当时,的值为A.2aB.2bC.D.6.【山东省菏泽市2018年中考数学试题】规定:在平面直角坐标系中,如果点的坐标为,向量可以用点的坐标表示为:.已知:,,如果,那么与互相垂直.下列四组向量,互相垂直的是()A.,B.,C.,D.,7.【北京市2018年中考数学试卷】实数,,在数轴上的对应点的位置如图所示,则正确的结论是A.B.C.D.8..【湖南省湘西州2018年中考数学试卷】按照如图的操作步骤,若输入x的值为2,则输出的值是_____.(用科学计算器计算或笔算)79.(2017郴州第16题)已知12345357911,,,,,25101726aaaaa,则8a.10.【湖北省荆门市2018年中考数学试卷】将数1个1,2个,3个,…,n个(n为正整数)顺次排成一列:1,,,,,,…,,,…,记a1=1,a2=,a3=,…,S1=a1,S2=a1+a2,S3=a1+a2+a3,…,Sn=a1+a2+…+an,则S2018=_____.11(2017黑龙江绥化第21题)如图,顺次连接腰长为2的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第n个小三角形的面积为.12.(2017湖北黄石市第16题)观察下列格式:111112221111121122322331111111131122334223344……请按上述规律,写出第n个式子的计算结果(n为正整数).(写出最简计算结果即可)13.【山东省淄博市2018年中考数学试题】将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.814.【四川省达州市2018年中考数学试题】已知am=3,an=2,则a2m﹣n的值为_____.15.【湖北省孝感市2018年中考数学试题】我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.16.【云南省昆明市2018年中考数学试题】若m+=3,则m2+=_____.17.【广西钦州市2018年中考数学试卷】观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,…,根据其中规律可得30+31+32+…+32018的结果的个位数字是_____.18.【湖北省黄冈市2018年中考数学试题】若a-=,则a2+值为_______________________.19.【四川省成都市2018年中考数学试题】已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,__________.20.【湖北省荆门市2018年中考数学试卷】将数1个1,2个,3个,…,n个(n为正整数)顺次排成一列:1,,,,,,…,,,…,记a1=1,a2=,a3=,…,S1=a1,S2=a1+a2,S3=a1+a2+a3,…,Sn=a1+a2+…+an,则S2018=_____.9【典例剖析】例1.【2018年中考湖北省宜昌市】1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则a,b,c的值分别为()A.a=1,b=6,c=15B.a=6,b=15,c=20C.a=15,b=20,c=15D.a=20,b=15,c=6【答案】B点睛:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.&变式训练&变式1.1计算:21﹣1=1,22﹣1=3,23﹣1=7,24﹣1=15,25﹣1=31,…归纳各计算结果中的个位数字规律,猜测22014﹣1的个位数字是()A.1B.3C.7D.5【答案】B【解析】试题解析:∵21﹣1=1,22﹣1=3,23﹣1=7,24﹣1=15,25﹣1=31,26﹣1=63,27﹣1=127,28﹣1=255…∴由此可以猜测个位数字以4为周期按照1,3,7,5的顺序进行循环,知道2014除以4为503余2,而第二个数字为3,所以可以猜测22014﹣1的个位数字是3.10故选:B.学@科网变式1.2【2018年湖南省张家界市中考】观察下列算式:,,,,,,,…,则…的未位数字是()A.8B.6C.4D.0【答案】B例2.【2018年临安市中考】已知:2+=22×,3+=32×,4+=42×,5+=52×,…,若10+=102×符合前面式子的规律,则a+b=_____.【答案】109【解析】【分析】观察不难发现,一个整数加上以这个整数为分子,整数的平方减1作为分母的分数,等于这个整数的平方乘以这个分数,然后求出a、b,再相加即可得解.【详解】∵2+=22×,3+=32×,4+=42×,5+=52×,…,10+=102×,∴a=10,b=102-1=99,∴a+b=10+99=109,故答案为:109.变式2.1【2018年贵州省黔东南中考】根据下列各式的规律,在横线处填空:,,,…,﹣_____=.【答案】【