第十章保险费率和责任准备金

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

Liabilityinsuranceratesandreserves第十章保险费率和责任准备金浙江财经学院【学习要点】大数定律的保险意义保险费率的构成12保险责任准备金、财产保险责任准备金与人寿保险责任准备金5财产保险费率的厘定与人寿保险费率的厘定4保险费率厘定原则和方法3第一节保险费率一、大数定律及其在保险中的应用二、保险费率厘定的原则与方法三、人寿保险费率的厘定四、财产保险费率的厘定•我们知道事件发生的频率具有稳定性,即随着试验次数的增加,事件发生的频率逐渐趋于某个常数。大数定律所要揭示的就是这类稳定性。•大数定律:是用来说明大量的随机现象由于偶然性相互抵消所呈现的必然数量规律的一系列定理的统称,是保险经营的重要数理基础。(一)大数定律•设X1,X2,…,Xn是相互独立的随机变量序列,且具有相同的数学期望和方差:•,(n=1,2,……),•则对于任意的小正数都有•将这一法则运用于保险经营,可说明其含义。1-1切比雪夫大数定律nEX2VarX11lim1nknkPXn0•假设有n个被保险人,他们同时投保了n个相互独立的标的(比如汽车),每个标的发生损失额的大小是一个随机变量,且所有损失额X1,X2,…,Xn期望值相等,即有•如果我们按照保险标的可能发生的损失的期望值计算纯保费,而把每个Xn视为实际损失,显然,每个被保险人的实际损失Xn与其损失期望值一般都不会相等,然而根据大数定律,只要承保标的数量足够大,投保人所缴纳的纯保费与每人平均所发生的损失几乎相等。•这个结论反过来则说明保险人该如何收取纯保费,也即只有当一个投保人所缴的纯保费等于他的损失期望值时,才能保证保险人在整体上的收支平衡。12nEXEXEX11nkkXn1-2贝努利大数定律•贝努利大数定律表明事件发生的频率具有稳定性,也即当试验次数很大时,事件发生的频率与其概率有较大偏差的可能性很小。•这一定律是用频率解释概率的数理基础,这对于利用统计资料来估计损失概率是极其重要的。在非寿险精算中,可以假设某一保险标的具有相同的损失概率,这样就可以通过以往的有关统计数据,求出这类保险标的发生损失的频率,这个计算出来的频率即为损失概率。•但通过这种方法计算出来的损失概率是对实际概率的估计,与实际概率之间有一个偏差。根据大数定律,在观察次数很多或观察周期很长的情况下,计算出来的这一频率将与实际损失概率很接近。也就是说,随着保险标的数量的增加,根据概率的频率解释计算出来的理论损失概率与实际损失概率之间的误差会逐渐减少,估计出来的损失概率的稳定性和真实性越高。•所以,保险人承保的保险标的的数量越大,保险人根据大数定律厘定的保费越准确,财务稳定性越强,经营危险越小。1-3泊松大数定律•泊松大数定律运用于保险经营上,可以说明,尽管各个相互独立的危险单位的损失概率可能各不相同,但只要有足够多的标的,仍可在平均意义上求出相同的损失概率。为了有足够多的标的,便于运用大数定律,可以把性质相近的标的集中在一起,求出一个整体的费率。•大数定律应用于保险得出最有意义的结论是:当保险标的的数量足够大时,通过以往统计数据计算出来的估计损失概率与实际概率的误差将很小。保险经营利用大数定律把不确定数量关系向确定数量关系转化,即某一危险事件是否发生对某一个保险标的来说是不确定的,可能发生也可能不发生。但当保险标的的数量很大时,我们可以很有把握地确定其中遭受危险事故的保险标的数量是多少。这样,根据大数定律,我们把对单个保险标的来说是否发生事故的不确定的数量关系转化为对保险标的的集合来说确定的数量关系。1-4、举例•在抛掷硬币的随机试验中,知道正面朝上的概率为0.5。但0.5只是理论上的概率,在实际的随机试验中实际发生的频率不会恰好为0.5,而会有一些误差。•在10次抛掷硬币的随机试验中,实际出现正面的次数可能为3次,另7次为反面。这时,正面朝上的实际发生频率为0.3,与理论概率0.5有0.2的误差。•在1000次抛掷硬币的随机试验中,实际出现正面的次数可能为470次,另530次为反面。这时,正面朝上的实际发生频率为0.47,与理论概率0.5有0.03的误差。•在100000次抛掷硬币的随机试验中,实际出现正面的次数可能为49700次,另50300次为反面。这时,正面朝上的实际发生频率为0.497,与理论概率0.5只有0.003的误差。•从上面的分析可以看出,随着试验次数的增加,正面朝上的概率为0.5的可信性也随着增大,换句话说,正面朝上的实际发生频率的稳定性会增加。•所以,相对于单个损失危险单位,包含多个损失危险单位集体更加能做出准确的估计。保险标的数量越多,实际发生损失频率与预期损失概率越接近,通过以往统计数据得出的预期损失概率的确定性就越高,正如抛掷100000次硬币出现正面朝上的次数会比抛掷10次硬币出现正面朝上的次数更接近其半数一样。(二)保险运行的数理解释•人们在日常生活中会面临各种危险,这些危险往往给人们带来巨大的财产损失和经济困难,如火灾与风灾的财产损失、失业与死亡的个人损失。尽管人们无法预测或完全预防这些危险的发生,但他们能够为这些损失对其财务造成的影响做准备。•保险正是提供了这样一种帮助人们分散危险、分摊损失的机制,这就是保险的本质——损失分担,其方法是以确定的小损失(缴纳的保费)取代不确定的大损失。在此,可以下面简单的例子来说明保险中的损失分摊机制。1000栋房屋着火概率=0.2%10000元/栋不着火概率=99.8%•根据统计资料,在这一年内预计失火的房屋是2栋,由此引发的单个房屋赔款期望值为20元(0.002×10000+0.998×0=20),总额期望值为20×1000=20000元,很显然保险人对每位房主应收取的费用P为20元,即每人缴纳20元,可获得一旦危险发生时的10000元的补偿。•在上述分析中,值得注意的是保险公司在一年内实际的赔款总额是一个随机变量,而这里20000元却是保险公司根据以往统计数据预测的赔款总额的期望值。很显然实际的赔款发生额会与预测期望值20000元有偏差。•一般而言,随着保险标的数额的增加,这种偏差会减小,比如有10000甚至更多房屋参加了这个保险计划,则根据大数定律,发生较大偏差的可能性就很小了;反之,如果该保险计划只有少数保险标的,则保险公司是很难准确估计期望损失的。如果保险标的少到只有一个,即只为一栋房屋投保,则无异于一次赌博。•显然,大数定律在这种损失分摊的机制中起着重要的作用。保险就像是一个蓄水池,每人贡献一点保费,这些资金被保险公司集中起来以弥补少数不幸者所遭受的损失。当参与这种蓄水机制的单位数越多时,蓄水池的功能越能正常稳定地发挥。(三)大数定律与风险分散在上面例子中我们看到房主只需缴纳20元的纯保费,即可获得在危险发生时保险公司对损失的赔偿——10000元。保险公司收取了保费,也就承担了被保险人转移给它的危险,那么保险公司是如何管理危险的呢?•事实上,保险公司并不能更好地预测单个被保险人面临风险的可能性的大小,也不可能降低危险发生的可能性。•在预测危险方面,保险人与被保险人的根本区别在于被保险人只能预测自己面临的危险,而保险人预测的是所有被保险人面临的整体危险。虽然保险人不能准确预测具体某个被保险人是否发生损失,但是保险人可以对承担的整体危险做出比较准确可信的估计。•下面就从随机变量的方差与变异系数上加以具体分析。数学分析:(四)大数定律在保险中应用的双重性•保险公司必须根据以往的统计资料预先给出每栋房屋失火的概率并由此计算出纯保费。因此准确估计出险概率对保险公司至关重要。•根据大数定律,以往经验数据越多,对事件发生的概率估计就越准确。这种估计的准确性是能否准确预测未来危险的前提条件。但是另一方面,即使我们能准确估计出事件发生的概率,如果未来危险单位数较少时,也很难准确预测未来危险。为使预期结果能很好地接近真实结果,必须将概率估计值运用到大量危险单位中。因此,大数定律的应用具有双重性。第一重:•为准确估计事件发生的概率,保险公司必须掌握大量的经验数据。经验数据越多,对事件发生的概率的估计就越准确。第二重:•一旦估计出事件发生的概率,必须将此概率估计值运用到大量的危险单位中才能对未来损失有比较准确的估计。•在用经验数据进行未来危险预测时,保险公司往往假设过去事件发生的概率与未来事件发生的概率相同,并且对过去事件发生概率的估计是准确的。但是过去事件发生的概率与未来事件发生的概率往往不一样。事实上,由于各种条件的变化,事件发生的概率也在不断变化。另外,也不能从过去的经验数据中得出完全准确的概率。所有这些都导致实际经验与预期结果之间存在必然偏差,保险公司的危险实际上也就是这种偏差。保险公司可以通过承保大量危险单位提高对危险单位预测的准确性。一、大数定律及其在保险中的应用二、保险费率厘定的原则与方法三、人寿保险费率的厘定四、财产保险费率的厘定第一节保险费率(一)保险费率的构成保险费:•投保人为获得经济保障而缴纳给保险人的费用。保险费由纯保险费和附加保险费构成。纯保险费:•主要用于保险赔付支出。附加保险费:•主要用于保险业务的各项营业支出,其中包括营业税、代理手续费、企业管理费、工资及工资附加费、固定资产折旧费以及企业盈利等。•保险费率:是保险费与保险金额的比例,又被称为保险价格。同样,保险费率一般由纯费率与附加费率两部分组成。•纯费率:又称净费率,它是用来支付赔款或保险金的费率,其计算依据因险种的不同而不同。财产保险纯费率的计算依据是损失概率,人寿保险纯费率计算的依据是利率和生命表。•附加费率:是附加保费与保险金额的比率。把纯费率和附加费率加总起来,就构成保险费率。(二)保险费率厘定的基本原则1、公平合理原则2、充分原则3、相对稳定原则4、促进防灾防损原则(三)保险费率厘定的方法1、分类法2、增减法3、观察法纯保险费率法损失比率法表定法经验法追溯法1、分类法•定义:依据某些重要的标准,对危险进行分类,并据此将被保险人分成若干类别,把不同的保险标的根据危险性质归入相应群体,分别确定费率的方法。•基于这样一种假设:被保险人将来的损失很大程度上由一系列相同的因素决定。这一方法有时也被叫做手册法,因为各种分类费率都印在手册上,保险人只需查阅手册,便可决定费率。这是一种最常用也是最主要的保险费率厘定方法,被广泛运用于财产保险、人寿保险和大部分人身意外伤害保险。•对于财产保险,一般根据标的物的使用性质分为不同的类别,每一类又可以分为若干等级。不同类别,不同等级,费率各异。•对于人身保险,一般按照性别、年龄、健康状况、职业等分类。分类法的思想符合保险运行所遵循的大数定律。大数定律要求保险标的损失概率相同。只有标的物面临同质危险,才能较好地符合这个条件。因此,必须在对危险进行分类的基础上确定不同类别的保险费率。分类法-1(1)纯保险费率法分类法-20.70.616.7%0.6AEE费率调整比例A为实际损失率;E为预期损失率。优点:在于便于运用,适用费率可迅速查到。(2)损失比率法定义:是指根据实际损失比率调整费率。例如机动车辆险的预期损失比率为60%,即总保险费的40%为费用比率。而实际发生的损失比率为70%,则保险费率应该提高16.7%。缺点:不尽公平。如在分类法下是不加区别地向所有投保人按确定的保险费率征收保费。这对不同的投保人来说是欠公平的。例如,相对于钢筋混凝土建筑来说,砖木结构的建筑遭受火灾的危险更大,但两者所缴的保费却一样。2、增减法•定义:是指在同一分类中,对投保人给以变动的费率。•增减法是在凭借分类法确定的基本费率的基础上,再依据实际情况予以细分测定费率。与分类费率相比,在增减法下厘定出来的费率,有可能高于或低于分类法所确定的费率。•分类:表定法、经验法、追溯法。•但无论何种方法,均适用于较大规模的投保人,这是因为:第一,对小规模投保人而言,费率的些许变动对其影响不大,但对大规模投保人而言,由于保险金额高,费率稍微发生变动就会产生影响。第二,增减费率所花的费用较大。只

1 / 117
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功