相似三角形知识点整理及练习题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

相似三角形知识点整理一、本章的两套定理第一套(比例的有关性质):涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。二、有关知识点:1.相似三角形定义:____________________的三角形,叫做相似三角形。2.相似三角形的表示方法:用符号______表示,读作________。3.相似三角形的相似比:相似三角形的__________叫做相似比。4.相似三角形的预备定理:平行于三角形一边的直线和___________________相交,所截成的三角形与原三角形相似。5.相似三角形的判定定理:(1)三角形相似的判定方法与全等的判定方法的联系列表如下:类型斜三角形直角三角形全等三角形的判定SASSSSAAS(ASA)HL相似三角形的判定从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。6.直角三角形相似:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。7.相似三角形的性质定理:(1)相似三角形的____________(2)相似三角形的______________(3)相似三角形的对应_________的比,对应_____的比和对应___________的比都等于相似比。(4)相似三角形的周长比等于_______。(5)相似三角形的面积比等于__________。8.相似三角形的传递性如果△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2,那么△ABC∽A2B2C2cdabdbcaacbd或合比性质:ddcbbabcaddcba(比例基本定理)bandbmcandbnmdcba:)0(等比性质三、注意1、相似三角形的基本定理,它是相似三角形的一个判定定理,也是后面学习的相似三角形的判定定理的基础,这个定理确定了相似三角形的两个基本图形“A”型和“8”型。在利用定理证明时要注意A型图的比例ADABDEBCAEAC,每个比的前项是同一个三角形的三条边,而比的后项是另一个三角形的三条对应边,它们的位置不能写错,尤其是要防止写成ADDBDEBCAEEC的错误。2、相似三角形的基本图形Ⅰ.平行线型:即A型和X型。Ⅰ.相交线型三角形相似及比例式或等积式。4、添加辅助平行线是获得成比例线段和相似三角形的重要途径。5、对比例问题,常用处理方法是将“一份”看着k;对于等比问题,常用处理办法是设“公比”为k。相似三角形测试卷一、选择题1.下列命题中,正确的是()A.任意两个等腰三角形相似B.任意两个菱形相似C.任意两个矩形相似D.任意两个等边三角形相似2、.已知点C在直线AB上,且线段AB=2BC,则AC:BC=()A.1B.2C.3D.1或33、如图,在长为8cm、宽为4cm的矩形中,截去一个矩形,使得留下的矩形与原矩形相似,则留下矩形的面积是()A.2cm2B.4cm2C.8cm2D.16cm24、ΔABC中,DE//BC,且SΔADE:S梯形BCED=1:2,则DE:BC的值是()A.1:2B.1:3C.1:2D.1:35、如图□ABCD中,Q是CD上的点,AQ交BD于点P,交BC的延长线于点R,若DQ:CQ=4:3,则AP:PR=()A.4:3B.4:7C.3:4D.3:76、如图,梯形ABCD的对角线相交于点O,有如下结论:①ΔAOB∽ΔCOD,②ΔAOD∽ΔBOC,③SΔAOD=SΔBOC,④SΔCOD:SΔAOD=DC:AB;其中一定正确的有()A.1个B.2个C.3个D.4个CEDBACADB.CBDEA7、如图,□ABCD中,E为AD的中点.已知△DEF的面积为S,则△DCF的面积为()A.SB.2SC.3SD.48、在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比。已知这本书的长为20cm,则它的宽约为A.12.36cmB.13.6cmC.32.36cmD.7.64c第3题第5题第6题第7题9、如图,RtABC△中,ABAC,3AB,4AC,P是BC上一点,作PEAB于E,PDAC于D,设BPx,则PDPE()A.35xB.45xC.72D.21212525xx10、如图,在□ABCD中,E是BC的中点,且∠AEC=∠DCE,下列结论不正确...的是()A、BF=21DFB、S△FAD=2S△FBEC、四边形AECD是等腰梯形D、∠AEB=∠ADC二、填空题11、如图,将三个全等的正方形拼成一个矩形ADHE,则:ADEACEABE等于度12、一张等腰三角形纸片,底边长l5cm,底边上的高长22.5cm.现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是第_______张.13、如图ABC中,ABCD,垂足是D,下列条件中能证明ABC是直角三角形的有(只填序号)。①90BA②222BCACAB③BDCDABAC④BDADCD214、如图,点M是△ABC内一点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是4,9和49.则△ABC的面积是_______..第11题第12题第13题第14题OCBDARQPDCBAADCPBEABCDEFHGFEDCBADCBA三、解答题15、(1)已知:151110accbba,求cba::的值16、如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.①求证:△ADF∽△DEC②若AB=4,AD=33,AE=3,求AF的长.17、已知ABC△,延长BC到D,使CDBC.取AB的中点F,连结FD交AC于点E.(1)求AEAC的值;(2)若ABaFBEC,,求AC的长.18、如图,已知:DEBCAEACADAB,求证:BDACCEAB19.如图,在△ABC中,AB=AC=1,点D、E在直线BC上运动,设BD=x,CE=y.如果∠BAC=30°,∠DAE=105°,试确定y与x之间的函数关系。EDCBAEADBCABCDEMN20已知,如图,梯形ABCD中,AB∥DC,梯形外一点P,连结PA、PB分别交DC于F、G,且DF=FG,对角线BD交AF于E,求证:AP∶PF=AE∶EF21、E为正方形ABCD的边上的中点,AB=1,MN⊥DE交AB于M,交DC的延长线于N,求证:⑴EC2=DC·CN;⑵CN=41;⑶NE=45;22、如图ABC中,边BC=60,高AD=40,EFGH是内接矩形,HG交AD于P,设HE=x,⑴求矩形EFGH的周长y与x的函数关系式;⑵求矩形EFGH的面积S与x的函数关系式。23正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,(1)证明:RtRtABMMCN△∽△;(2)设BMx,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN面积最大,并求出最大面积;(3)当M点运动到什么位置时RtRtABMAMN△∽△,求此时x的值.ABCDFPGEPHGFEABDC

1 / 5
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功