直流电机不可逆调速设计

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

西北工业大学电力电子技术课程设计报告直流电动机不可逆调速系统设计姓名张强学号200702460132年级2007级专业自动化系(院)工程学院指导教师2009年11月23日目录一、引言................................................11.1直流电动机控制的发展现状及趋势...........................11.2研究直流电动机不可逆调速的意义...........................2二、设计任务与要求......................................32.1设计任务...........................................................32.2技术数据要求............................................3三、设计方案选择及论证..................................33.1总体设计方案的论证与比较.................................33.2模块电路设计方案论证与比较...............................53.2.1主电路设计方案的论证比较.................................................................53.2.2控制电路设计方案的论证比较........................................................63.3总体设计.................................................7四、总体电路设计........................................84.1主电路的计算............................................84.2触发电路的选择与校验....................................114.3控制电路设计计算........................................124.4双闭环直流调速系统的动态设计.............................134.5继电器-接触器控制电路设计................................15五、系统传递函数图、原理图及电路图.....................16六、总结...............................................18参考文献...............................................191直流电动机不可逆调速系统课程设计一、引言1.1直流电动机控制的发展现状及趋势常用的控制直流电动机有以下几种:第一,最初的直流调速系统是采用恒定的直流电压向直流电动机电枢供电,通过改变电枢回路中的电阻来实现调速。这种方法简单易行设备制造方便,价格低廉。但缺点是效率低、机械特性软、不能在较宽范围内平滑调速,所以目前极少采用。第二,三十年代末,出现了发电机-电动机(也称为旋转变流组),配合采用磁放大器、电机扩大机、闸流管等控制器件,可获得优良的调速性能,如有较宽的调速范围(十比一至数十比一)、较小的转速变化率和调速平滑等,特别是当电动机减速时,可以通过发电机非常容易地将电动机轴上的飞轮惯量反馈给电网,这样,一方面可得到平滑的制动特性,另一方面又可减少能量的损耗,提高效率。但发电机、电动机调速系统的主要缺点是需要增加两台与调速电动机相当的旋转电机和一些辅助励磁设备,因而体积大,维修困难等。第三,自出现汞弧变流器后,利用汞弧变流器代替上述发电机、电动机系统,使调速性能指标又进一步提高。特别是它的系统快速响应性是发电机、电动机系统不能比拟的。但是汞弧变流器仍存在一些缺点:维修还是不太方便,特别是水银蒸汽对维护人员会造成一定的危害等。第四,1957年世界上出现了第一只晶闸管,与其它变流元件相比,晶闸管具有许多独特的优越性,因而晶闸管直流调速系统立即显示出强大的生命力。由于它具有体积小、响应快、工作可靠、寿命长、维修简便等一系列优点,采用晶闸管供电,不仅使直流调速系统经济指标上和可靠性有所提高,而且在技术性能上也显示出很大的优越性。晶闸管变流装置的放大倍数在10000以上,比机组(放大倍数10)高1000倍,比汞弧变流器(放大倍数1000)高10倍;在响应快速性上,机组是秒级,而晶闸管变流装置为毫秒级。[14]从20世纪80年代中后期起,以晶闸管整流装置取代了以往的直流发电机电动机组及水银整流装置,使直流电气传动完成一次大的跃进。同时,控制电路也实现了高度集成化、小型化、高可靠性及低成本。以上技术的应用,使直流调速系统的性能指标大幅提高,应用范围不断扩大,直流调速技术不断发展。随着微型计算机、超大规模集成电路、新型电子电力开关器件和新型传感器的出现,以及自动控制理论、电力电子技术、计算机控制技术的深入发展,直流电动机控制也装置不断向前发展。微机的应用使直流电气传动控制系统趋向于数字化、智能化,极大地推动了电气传动的发展。近年来,一些先进国家陆续推出并大量使用以微机为控制核心的直流电气传动装置,如西门子公司的SIMOREGK6RA24、ABB公司的PAD/PSD等等。2随着现代化步伐的加快,人们生活水平的不断提高,对自动化的需求也越来越高,直流电动机应用领域也不断扩大。例如,军事和宇航方面的雷达天线,火炮瞄准,惯性导航,卫星姿态,飞船光电池对太阳得跟踪等控制;工业方面的各种加工中心,专用加工设备,数控机床,工业机器人,塑料机械,印刷机械,绕线机,纺织机械,工业缝纫机,泵和压缩机等设备的控制;计算机外围设备和办公设备中的各种磁盘驱动器,各种光盘驱动器,绘图仪,扫描仪,打印机,传真机,复印机等设备的控制;音像设备和家用电器中的录音机,录像机,数码相机,洗衣机,冰箱,电扇等的控制。随着计算机,微电子技术的发展以及新型电力电子功率器件的不断涌现,电动机的控制策略也发生了深刻的变化。电动机控制技术的发展得力于微电子技术,电力电子技术,传感器技术,永磁材料技术,微机应用技术的最新发展成就。变频技术和脉宽调制技术已成为电动机控制的主流技术。正是这些技术的进步使电动控制技术在近二十年内发生了很大的变化。其中,电动机控制策略的模拟实现正逐渐退出历史舞台,而采用微处理器,通用计算机,FPGA/CPLD,DSP控制器等现代手段构成的数字控制系统得到了迅速发展。电动机的驱动部分所采用的功率器件经历了几次的更新换代以后,速度更快,控制更容易的全控型功率器件MOSFET和IGBT逐渐成为主流。功率器件控制条件的变化和微电子技术的使用也使新型的电动机控制方法能够得到实现。其中,脉宽调制(PWM)方法,变频技术在直流调速和交流调速系统中得到了广泛应用。永磁材料技术的突破与微电子技术的结合又产生了一批新型的电动机,如永磁直流电动机,交流伺服电动机,超声波电动机等。由于有微处理器和传感器作为新一代运动控制系统的组成部分,所以又称这种运动控制系统为智能运动控制系统。所以应用先进控制算法,开发全数字化智能运动控制系统将成为新一代运动控制系统设计的发展方向。在那些对电动机控制系统的性能要求较高的场合(如数控机床,工业缝纫机,磁盘驱动器,打印机,传真机等设备中,要求电动机实现精确定位,适应剧烈负载变化),传统的控制算法已难以满足系统要求。为了适应时代的发展,现有的电动机控制系统也在朝着高精度,高性能,网络化,信息化,模糊化的方向不断前进。1.2研究直流电动机不可逆调速的意义直流调速系统是电力电子技术早期的主要应用领域,今天由于交流调速的广泛应用和巨大优势,直流调速系统已呈被淘汰之势。但是,除已有的大量直流调速系统正在运行外,仍有一些新的直流调速系统不断投入运行;在直流调速系统中,我国相对成熟的晶闸管大量应用,使得其在我国还有一定的发展前景。我国从20世纪60年代初试制成功第一只硅晶闸管以来,晶闸管直流调速系统也得到迅速的发展和广泛的应用。目前,晶闸管供电的直流调速系统在我国国民经济各部门得到广泛的应用。基于晶闸管可控电路的直流调速在上世纪七八十年代在我国得到大力的推广和应用,经过30多年的发展历史,虽然部分停留在分立器件的基础上,体积大,接线复杂,使用极不方便而且价格昂贵。但经过多年的发展也已形成一定规模,我国多家公司业已研究并生3产出了多种直流调速模块,本着集成和使用方便的原则将直流调速系统模块化。先进的工艺流程和高性能的电路设计大大提高了模块的使用寿命和可靠性,而且性价比很高,为直流调速领域增添了新的活力。随着电力电子技术的发展,晶闸管直流调速系统已在各工业部门得到广泛应用对节能起到很大促进作用。而且很多其他直流调速方案都是在晶闸管调速方案的基础上发展而形成的,因此研究和发展直流不可逆调速系统,对直流调速系统的发展及可靠运行和应用有重大作用。二、设计任务与要求2.1设计任务本次设计任务是根据设计的技术要求设计直流电动机的调速系统,基于晶闸管控制电路,实现直流电动机不可逆调速。2.2技术数据要求(1)电枢回路总电阻取R=2Ra;总飞轮力矩GD2=2.5GDa2=2.5*5.49N.m2,P极对数均为1。(2)要求:调速范围D=10,静差率S≤5%;稳态无静差,电流超调量σ%≤5%,电流脉动系数Si≤10%;启动到额定转速时的转速退饱和超调量σn%≤10%。(3)要求系统具有过流、过压、过载和缺相保护。(4)要求触发脉冲有故障封锁能力。(5)要求对拖动系统设置给定积分器。三、设计方案选择及论证3.1总体设计方案的论证与比较直流电动机调速的方法有多种,各有其自己的优势和缺点。下面就主要的调速方法归纳如下(1)改变电枢回路电阻调速即在电枢回路中串入一个电阻,其阻值的大小根据实际需要而定,使电动机特性变软,特点:在保持电源电压和气隙磁通为额定值,在电枢回路中串入不同阻值的电阻时,可以得到不同的人为机械特性曲线,由于机械特性的软硬度,即曲线斜率的不同,在同一负载下改变不同的电枢电阻可以得到不同的转速,以达到调速的目的,属于基速以下的调速方法。这种方法简单,容易实现,而其成本较低,单外串电阻只能是分段调节,不能实现无级调速,而其电阻在一定程度上要消耗能量,功率损耗大,低速运行时转速稳定性较差,只能适应对调速要求不高的中小功率型电动机。(2)弱磁调速通过改变励磁线圈中的电压Uf,使磁通量改变(Uf增大,磁通量增4大;Uf增小,磁通量增小)。特点:保持电源电压为恒定的额定值,通过调节电动机的励磁回路的励磁电流大小,改变电动机的转速。这种调速方法属于基速以上的恒功率调速的方法。在电流较小的励磁回路内进行调节,因此控制起来比较方便,功率损耗小,用于调节励磁的电阻器功率小,控制方便且容易实现,而其更重要的是此方法可以实现无级平滑调速,但由于电动机的换向有限以及机械强度的限制,速度不能调节得太高,从而电动机的调速范围也就受到了限制。(3)调节电枢电压调速电机降压起动是为了避免高启动转矩和启动电流峰值,减小电动机启动过程的加速转矩和冲击电流对工作机械、供电系统的影响。特点:在保持他励直流电动机的磁通为额定值的情况下,电枢回路不串入电阻,将电视两端的电压,即电源电压降低为不同的值时,可以获得与电动机固有机械特性相互平行的人为机械特性,调速方向是基速以下,属于恒转矩调速方法。只要输出的电压是连续可调的,即可实现电动机的无级平滑调速,而且低速运行时的机械特性基本保持不变。所以得到的调速范围可以达到很高,而且能实现可逆运行。但对于可调的直流电源成本投资相对其他方法较高。又由于电力电子技术的发展,出现了各种的直流调压方法,可分为如下两种:1)使用晶闸管可控整流装置的调速系统;2)使用脉宽调制的晶体管功率放大器调速系统。因此此次设

1 / 21
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功