工科高数Ⅱ第五章作业解答48页习题3.(2)2222121zxyxy;解:函数定义域为22{(,)12},Dxyxy是有界的连通集(3)ln[ln()]zxyx解:函数定义域为{(,)0101}Dxyxyxxyx且0或且是无界不连通的开集。7.求下列极限(2)(,)(0,0)lim11xyxyxy(,)(0,0)(,)(0,0)(11)=lim11lim(11)2xyxyxyxyxyxy解:原式(4)1220ln()limyxyxexyln2=ln21解:原式(7)20sin()limxyxyy20sin()=lim2xyxyxxy解:原式(8)222222001cos()lim()xyxyxyxye222222222002200()2=lim()lim02yxyxyxxyxyxyexye解:原式63页习题2.求下列函数的偏导数:(1)33zxyyx2332:3,3xyzxyyzxxy解(3)ln()zxy1112ln()2ln()111;2ln()2ln()xyzyxyxyxxyzxxyxyyxy解:(6)(1)yzxy121ln(1)(1)(1),[](1)[ln(1)];1yyxyxyyyyzyxyyyxyxyzexyxyxy解:(7)yzux122,1ln,lnlnyzxyzyyyzzzyuxzuxxzyyuxxxxzz解:7.221,21,22,2+3zxy求函数在点()处从点()到点()方向的方向导数。2(1,2)(1,2)(1,2(1,2)(1,2)1,22,2+3,{1,3},113cos,cos,221(3)2,4,=coscos123llzzxyzzzlxy)解:设从()到()的方向向量为则且方向余弦为又所以方向导数为。8.2ln()41,2zxyyxx求函数在抛物线上点()处沿这条抛物线在该点处偏向轴正向的切线方向的方向导数。2(1,2)1,2(1,2)(1,2)(1,2)(1,2)(1,2(1,2)(1,2)1,2,4122=1tan,cos,cos4221111,,332=coscos3lyxylxzzxxyyxyzzzlxy())解:设过抛物线上点()的切线方向向量为由方程得,的方向余弦为而所以方向导数为。64页习题14.求下列函数的全微分。(3)22yzxy222222222222222222332222221()()1()()()ydzdxydyydxyxyxyxyyxydydxdyxyxyxyxyxdxdyxyxy解:(5)lntan()yzx2221lntan()tan()tan()sec()21()()2tan()sin()22csc()()yydzddyxxxyyxdxdyydxyyxxxxydyydxxxx解:15.22(1)ln(1)1,2zxy求在点()处的全微分22222222(1,2)1ln(1)=(1)11(22),1121,233dzdxydxyxyxdxydyxydzdxdy解:因为所以在点()处的全微分65页习题31.22222,.zzzxyxy求下列函数的和(2)sin()zxxy22222sin()cos(),cos()cos()cos()sin()2cos()sin();sin();cos()sin()zxyxxyxzxxyyzxyxyxxyxxyxxyzxxyyzxyxxyxy解:(4)xzy1222222211ln;;ln;(1);ln(ln1)xxxxxxxzzyyxyxyzyyxzxxyyzyxyyyxyxyy解:71页习题1.求下列函数的全导数:(2)23,sin,,xydzzextytdt设而求;3222sin22=cos23(cos6)xyxyttdzzdxzdydtxdtydtetetett解:(4)arcsin(),,;xdzzxyyedx设而求2222=+111()1()(1)1xxxdzdzdzdydxdxdydxyxexyxyexxe解:(6),,sin,;xdzzxyytyetxdx设求=+cos1sincos)xxxdzdzdzdydzdtdxdxdydxdtdxyxeteyxexxx解:(2.求下列函数的一阶偏导数:(2)2ln,,32;xvvxyy设z=u而u222212ln323ln(32);(32)zzuzvxuxvxuuvyvxxxyyyxy解:zzuzvyuyvy2222322ln(2)22ln(32);(32)xuuvyvxxxyyyxy(3)2222,cos;uxyzzxy设而3224222cos24cos;22(sin)2sin2uuuzxxzxxzxyxxyuuuzyyzyyzxyyxy解:3.求下列函数的一阶偏导数(其中f具有一阶偏导数):(1)(,),,;ufxyxstyst而12121;1;ufxfysxsysfftufxfytxtytffs解:(5)(,,)ufxxyxyz123233;;;uffyfyzxufxfxzyufxyz解:72页习题9.求下列函数的二阶偏导数(其中f具有一阶连续偏导数):(1)22();zfxy222222222;2,24;224;224;24zzfxfyxyzfxfxzxfyxyfxyzyfxxyfyxzfyfy解:。(3)(,);xzfxy12222111221222221222222322212122222222222322341;,111;1;11();22zzxfffxyyyzffffxyyyzxxfffxyyyyzxfffyxyyyzxxxxxffffyyyyyy解:。77页习题4.求由下列方程确定的函数的导数或偏导数。(1)2sin0;xyexy222(sin)0,cos20,cos2xxxdyexyydyedxydxxydydyyedxyxy解:对方程两边微分,得:即所以。(2)22lnarctan;yxyx2222222222(ln)(arctan),111(22)()2=,ydxydxxyxdxydydydxxyxxxyxyxdxydyxdyydxdyxydxxy解:对方程两边微分,得:即所以也即(6)(,,)0,FxxyxyzF可微。122333123233312233(,,)0,0=+1(1)dFxxyxyzFdxFdxFdyFdxFdyFdzFFFFFdzdxdyFFFFFzzxFyF解:对方程两边微分,得:即所以有:则(),78页习题7.,sin()0,xyxyexzxydz设是由方程所确定的的函数,求。(sin())0,sin()()cos()()0sin()cos()sin()cos()cos()(1tan())tan()xyxyxyxyxyxyxyxydexzexzdxdyexzdxdzexzexzexzdzdxdyexzexzxzdxxzdy解:对方程两边微分,得:即10.220,zzexyzx设求。(,,),;;zzxyzFxyzexyzFyzFxzFexy解:设则2222222323223;()()()()()22()xzzzzzzzzzzzzFzyzxFexyzzexyyeyzyzzxxxexyexyyyzeyzexyyzexyeyzxyzeyzexy所以11.2330,zzxyzxy设求。32222222222(,,)33;3;33;()()(2)()(2)()xyzyxzzFxyzzxyzFyzFxzFzxyFFzyzzxzxFzxyyFzxyzzzxyzyyzzxzyyxyzxyzzzyyzzxyyzxyzxy解:设则32332223532223()2()2()zzxyxyzxyzxyzzxyzxyzxyzzxy12.求由下列方程组所确定的函数的导数或偏导数:(1)22222230zxyxyz22642222484;12412136412622126124122664xdzdyyxdxdxdzdyzyxdxdxxyxydzxyxyxydxyyzzzyxzxdyxxzxxzydxyyzyyzzy解:对方程组中两方程求关于的导数:(4)sinsinuuxeuvyeuvx解:对方程组中两方程求关于的偏导数,得(sin)cos1(cos)sin0uuuvevuvxxuvevuvxx1cos0sinsinsinsincos(sincos)1sincoscossinsin1cos0cossincossincoscossinuuuuuuuuuuuuuvuvuuvvxuevuevuevvevuvevuvevevvevxuevuevuevuvevuv(sin)cos0(cos)sin10cos1sincos(sincos)1sincoscossinsin0cos1sinsincoscossinuuuuuuuuuuuyuvevuvyyuvevuvyyuvuvuvyevvevuvevuvevevvevyueevuvevuv同理,对方程组中两方程求关于的偏导数,得解方程得sincosuvuevu93页习题1.求下列函数的极值:221(,)4();fxyxyxy()221(,)4();420420(2,2),2,0,2(2,2)2,(2,2)0,xyxxxyyyxxxyfxyxyxyfxfyfffAff()解:由解得驻点又因为所以2(2,2)2,40,20,(2,2)(2,2)8yyfACBAf则且故在可取得极大值,极大值为。3.22(,)1;fxyxy22222220,0(,)11,(0,0)(0,0)1xyxfxyyfxyxyRxyf解:由解得偏导数不存在点(0,0),又有即在取得极大值,极大值为。(5).22