幂函数教材分析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

幂函数教学目标:使学生认识到幂函数同样也是一种重要的函数模型,掌握从特殊到一般地去进行类比研究幂函数的性质,并注意与指数函数进行对比学习.教学重点:幂函数的定义和图象.教学难点:幂函数的图象.教学过程:Ⅰ.复习引入幂函数的定义Ⅱ.讲授新课问题1:我们知道,分数指数幂可以与根式相互转化.把下列各函数先化成根式形式,再指出它的定义域和奇偶性.利用计算机画出它们的图象,观察它们的图象,看有什么共同点?(1)y=21x;(2)y=31x;(3)y=32x;(4)y=34x.思路:先将各式化为根式形式,函数的定义域就是使这些根式有意义的实数x的集合;奇偶性直接利用定义进行判断.(1)定义域为[0,+),(2)(3)(4)定义域都是R;其中(1)既不是奇函数也不是偶函数,(2)是奇函数,(3)(4)是偶函数.它们的图象都经过点(0,0)和(1,1),且在第一象限内函数单调递增.问题2:仿照问题1研究下列函数的定义域和奇偶性,观察它们的图象看有什么共同点?(1)y=x-1;(2)y=x-2;(3)y=21-x;(4)y=31-x.思路:先将负指数幂化为正指数幂,再将分数指数幂化为根式,函数的定义域就是使这些分式和根式有意义的实数x的集合;(1)(2)(4)的定义域都是{x|x≠0},(3)的定义域是(0,+);(1)(4)是奇函数,(2)是偶函数,(3)既不是奇函数也不是偶函数.它们的图象都经过点(1,1),且在第一象限内函数单调递减,并且以两坐标轴为渐近线.总结:研究幂函数时,通常先将负指数幂化为正指数幂,再将分数指数幂化为根式(幂指数是负整数时化为分式);根据得到的分式或根式研究幂函数的性质.函数的定义域就是使这些分式和根式有意义的实数x的集合;奇偶性和单调性直接利用定义进行判断.问题1和问题2中的这些幂函数我们要记住它们图象的变化趋势,有利于我们进行类比.[例1]讨论函数y=52x的定义域、值域、奇偶性、单调性,并画出图象的示意图.思路:函数y=52x是幂函数.(1)要使y=52x=5x2有意义,x可以取任意实数,故函数定义域为R.(2)∵xR,∴x2≥0.∴y≥0.(3)f(-x)=5(-x)2=5x2=f(x),∴函数y=52x是偶函数;(4)∵n=25>0,∴幂函数y=52x在[0,+]上单调递增.由于幂函数y=52x是偶函数,∴幂函数y=52x在(-∞,0)上单调递减.(5)其图象如右图所示.[例2]比较下列各组中两个数的大小:(1)1.553,1.753;(2)0.71.5,0.61.5;(3)(-1.2)32,(-1.25)32.解析:(1)考查幂函数y=53x的单调性,在第一象限内函数单调递增,∵1.5<1.7∴1.553<1.753(2)考查幂函数y=23x的单调性,同理0.71.5>0.61.5.(3)先将负指数幂化为正指数幂可知它是偶函数,∵(-1.2)32=1.232,(-1.25)32=1.2532,又1.232>1.2532∴(-1.2)32>(-1.25)32点评:比较幂形式的两个数的大小,一般的思路是:(1)若能化为同指数,则用幂函数的单调性;(2)若能化为同底数,则用指数函数的单调性;(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小.[例3]求函数y=52x+2x51+4(x≥-32)值域.解析:设t=x51,∵x≥-32,∴t≥-2,则y=t2+2t+4=(t+1)2+3.当t=-1时,ymin=3.∴函数y=52x+2x51+4(x≥-32)的值域为[3,+∞).点评:这是复合函数求值域的问题,应用换元法.Ⅲ.课堂练习课本P731,2Ⅳ.课时小结[师]通过本节学习,大家能熟悉并掌握幂函数的图象,提高数学应用的能力.Ⅴ.课后作业课本P73习题1,2,3,4

1 / 3
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功